• Title/Summary/Keyword: Rotating Chamber

Search Result 77, Processing Time 0.022 seconds

New Device for Addition of Modifier to Supercritical Fluid Carbon Dioxide Mobile Phase

  • 표동진;김호현
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.584-588
    • /
    • 1997
  • A new device to accurately deliver small amount of modifier into supercritical carbon dioxide fluid is described. Carbon dioxide, the most widely used mobile phase in supercritical fluid chromatography, is a relatively non-polar fluid, and hence the addition of small amount of polar modifiers could be necessary to migrate polar solutes. In this work, supercritical CO₂and modifier are delivered from the pump to a 100 μL mixing chamber in which a small magnetic bar is rotating. After passing through the mixing chamber, supercritical CO₂is changed to a new mobile phase with different polarity. The amount of modifier added into supercritical CO₂is measured by an amperometric microsensor, which is prepared from a thin film of perfluorosulfonate ionomer.

Spatial Analysis of Turbulent Flow in Combustion Chamber using High Resolution Dual Color PIV (고분해능 이색 PIV를 이용한 가솔린 엔진 연소실내 난류의 공간적 해석)

  • Lee, K.H.;Lee, C.S.;Lee, H.G.;Chon, M.S.;Joo, Y.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.132-141
    • /
    • 1998
  • Particle image velocimetry(PIV), a planar measuring technique, is an efficient tool for studying the complicated flow field such as in-cylinder flow, and intake port flow. PIV can be also used for analyzing the integral length scale of turbulence, which is a measure of the size of the large eddies that contain most of the turbulence kinetic energy. In this study, dual color scanning PIV was designed and demonstrated by using a rotating mirror and a beam splitter. This PIV system allowed enlargement of flexibility in the intensity of vectors to be calculated by spatial filtering technique, even in combustion chamber with high velocity gradient and high vorticity$({\sim}1000s^{-1})$. A new color image processing algorithm was developed, which was used to find the direction of particle movement directly from the digital image. These measuring techniques were successfully applied to obtaining the turbulence intensity (~0.1m/s) and the turbulent integral length scale of vorticity(~1mm).

  • PDF

The measurement and analysis of Regenerative Pump Noise (재생펌프 소음특성의 측정 및 해석에 관한 연구)

  • Kim, Tae-Hoon;Seo, Young-Soo;Jeong, Weui-Bong;Jeong, Ho-Kyeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1067-1071
    • /
    • 2004
  • In this paper, the characteristic of the regenerative pump is reviewed by the measurement and the analysis. The dominant noise sources are harmonic components of the rotating impeller frequency. The acoustic characteristics and the noise source position at the dump are identified. In order to reduce the high-level peak noise, the interior flow of the pump chamber is analyzed by CFD (Computational Fluid Dynamics). Acoustic pressure is calculated with Ffowscs Williams and Hawkings equation. As the result of the analysis new design of the pump chamber is recommended. The recommended pump is compared with original pump by evaluating the RMS value of a interior static pressure and the sound pressure level. The new pump chamber recommended by analysis results is proved by a process of the measurement. The overall SPL of a recommended pump is reduced about 3 dBA.

  • PDF

An Experimental Study on the Effect of Swirler Mass Flowrate and Flare Exit Length on Flow Patterns inside a Model Combustor Chamber (스월러 플레어 출구길이가 모델 챔버내 유동에 미치는 영향에 대한 실험적 연구)

  • Ryu, Gyong Won;Jin, Yu In;Kim, Yeong Ryon;Kim, Hong Jip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.70-75
    • /
    • 2016
  • A swirler is a flame holding device generating recirculation regions in a gas turbine combustor, and the flow pattern due to a swirler has major effects on the flame distributions, combustion efficiency, and characteristics of exhaust gas. An experimental study for a counter-rotating swirler has been conducted to find out effects of the mass flow rate ratio of the inner/outer swirler flow area, the pressure difference between the swirler inlet and outlet, and the flare exit length ratio on the flow patterns in a model combustion chamber by using PIV(Particle Image Velocimetry) technique.

Development and Evaluation of a Dust Generator Using Soil Samples (토양 분진발생장치의 개발과 평가)

  • Lee, Ji-Yeon;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.383-390
    • /
    • 2010
  • Exposure to fugitive dust can contribute to several respiratory health problems, and proper sampling of fugitive dust is necessary to assess exposure. However, field sampling of soil dust encounters problems from spatial and temporal differences in soil properties, field operations, and meteorological conditions. To minimize these problems, we designed a dust generator that simulates dust generation from soil. The dust generator consisted of a rotating chamber where soil samples were loaded and tumbled, and a settling chamber, where airborne soil dust samples were collected. As standard operating conditions, we decided on 2 g soil mass, 10 min sampling time, and 20 rpm rotating speed, with a flow rate of 30 l/min, based on three common soil textures of loam, sandy loam and silt loam. To evaluate optimal operating conditions, we used mixtures of Joomoonjin silica sand and clay. Although the average $PM_{10}$ concentration of Joomoonjin silica sand was low, dust concentrations were increased by an increased content of clay. The dust concentrations were consistent across repeated experiments, and showed similar concentration profiles during the sampling time with mixtures of clay and sand (coefficient of variation was $13.6{\pm}w;7.1%$). The results demonstrated that these standard operating conditions were suitable for the dust generator, which can be used to investigate variations in soil properties that affect dust production and potential potency of fugitive dust exposure.

Development of a Magnetic Seal and the Leak Test (마그네틱씰 개발 및 기밀 평가 시험)

  • Kim, Ock-Hyun;Lee, Min-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.79-83
    • /
    • 2011
  • Magnetic seal uses a magnetic fluid to seal a gap between a rotating shaft and housing. It is distinguished from other kinds of seals from the fact that solid contact does not occur in the seal. This implies that it is free from solid rubbing thus dustless and provides a clean circumstance. That is the reason why the magnetic seal is used exclusively for most of vacuum chambers in semiconductor process where dustless clean circumstance is critical. A magnetic seal has been developed of which design parameters are determined based on published data, and an air pressure test has been done to examine its sealing capability. Effects of some design parameters have been studied through FEM analysis. The results show some notable aspects of design parameters and provide suggestions for developing the seals. Regarding the sealing capacity of the magnetic seal the factor to match the theoretical value with the actual one was found to be 0.4~0.7, which means still there is some discrepancy between theory and actual.

Analysis of Heat Transfer of a Magnetic Fluid Seal (자성유체씰의 열전달 해석)

  • Kim, Ock-Hyun;Lee, Hee-Bok;Lee, Min-Ki;Hong, Jeong-Hui;Kwak, Yong-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.365-369
    • /
    • 2010
  • Magnetic fluid seal is characterized by its simple design, low friction and being dustless. Those advantages are deduced from the fact that the sealing element is not a solid such as rubber or plastic but it is a fluid. Those are critical for application to a rotating shaft which is inserted into a vacuum chamber where high level of vacuum and cleanness are required. For the reason the magnetic fluid seal has become a standard for vacuum chambers for semiconductor and LCD processing. It should be noted that its sealing performance is sensitive to temperature. If necessary, water cooling should be considered. Thus anticipation of the temperature distribution of the magnetic fluid seal is important before applying it. In this paper an FEM analysis of the heat transfer has been executed and compared with experimental results. An overall convective heat transfer coefficient has been adopted for the analysis, which results in satisfactory consistency of the theoretical and experimental results.

A Study on the Torque Characteristics of Rotary Dampers (로터리 댐퍼의 토오크 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2019
  • Rotary dampers are damping devices which provide high resistance to shaft rotation. Rotary dampers are being used in various areas to enable the gentle opening and closing of the rotation motion relative to home furniture, industry machinery and automotive parts. Rotary dampers can be installed directly at the rotating point of a various part and can achieve uniform, gentle movement which increases quality and value of products. And generally, the silicone fluid is used as the damping medium because of its stable viscous properties. The movement of these little decelerators can be achieved with a high viscosity of working fluid and throttles installed in the body of the rotary damper. The damping force can be achieved clockwise, anti-clockwise or in both directions according to the structure of the orifices or throttles. In this paper, the torque performances of the rotary damper containing air in the working fluid were studied. For this purpose, the torque characteristic of the rotary damper according to the variation of various operating conditions such as clearance of leakage, dimensions of groove orifice, content ratio of air, etc., were simulated with AMEsim software.

Fabrication and Mixing Characteristics of a Micro-Mixer with a Quasi-Active Rotor (준 능동형 로터를 이용한 마이크로 혼합기의 제작 및 혼합특성)

  • Kim, Young-Dae;Lee, Jong-Kwang;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.417-424
    • /
    • 2009
  • A micro-mixer with a quasi-active rotor was fabricated, and mixing characteristics were evaluated. The proposed micro-mixer combines an active type micro-mixer with a passive type micro-mixer. The micro-rotor, which is a moving part of an active type micro-mixer, is added in a micro-chamber of a passive type vortex micro-mixer. The rotor rotated by inflows tangent to a chamber, causing strong perturbations. The micro-mixers were fabricated using photosensitive glass. Mixing efficiency of the micro-mixers was measured using an image analysis method. Mixing efficiency and characteristics of the micro-rotor mixer were compared with the vortex micro-mixer without a rotor. Mixing efficiency was reduced as Reynolds number increased at a low Reynolds number due to decrease of residence time. Mixing efficiency at higher Reynolds number, on the other hand, was improved even though residence time decreased since the contact surface between fluids increased by twisted flow. The perturbation induced by rotating rotor at greater than Re 200 improved the efficiency of the rotor mixer.

DEVELOPMENT OF A NEW MODEL OF DRYING SYSTEM FOR HIGH YIELD OF THE HEAVEN GRADE GINSENG

  • Chang, D.I.;Bahng, S.H.;Chang, Y.H.;Kang, H.Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.370-377
    • /
    • 2000
  • The red ginseng is very popular as a health food. It has been manufactured with raw ginseng by the conventional method. But, the yield of the heaven grade ginseng (the best quality red ginseng) among the whole products is around 5-7%, Therefore, the yield should be improved in order to increase economic returns. In this study, a new model of drying system was developed to improve the yield of heaven grade ginseng from 7% to 15% or more. For this system, temperature and relative humidity were controlled by the feedback control system, and a solenoid valve for steam supply and other variables were controlled by the PC. The special features of this system developed are an image processing system for monitoring the red ginseng during the drying process in the drying chamber, and a cylindrical porous tray for holding ginseng that is rotating with the speed of 0-10rpm in the drying chamber and makes uniform drying of red ginseng possible.

  • PDF