• Title/Summary/Keyword: Rotating Bending Fatigue

Search Result 51, Processing Time 0.02 seconds

A study on the growth behaviors of surface fatigue crack initiated from a small-surface defect of 2024-T3 and brass (2024-T3 및 황동의 작은 표면결함재의 피로균열 성장특성에 관한 연구)

  • 서창민;오명석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.53-64
    • /
    • 1996
  • In this paper, rotating bending fatigue tests have been carried out to investigate the growth behabiors of surface fatigue crack initiated from a small artificial surface defect, that might exist in real structures, on 2024-T3 and 6:4 brass. The test results are analysed in the viewpoints of both strength of materials and fracture mechanics, it can be concluded as follows. The effect of a small artificial surface defect upon the fatigue strength is very large. The sensitivity of 2024-T3 on the defect is higher than that of 6:4 brass. The growth behavior of the surface fatigue crack of 2024-T3 is different from that of 6:4 brass. The growth rate of the surface fatigue crack of 2024-T3 is considerably rapid in the early stage of the fatigue life and apt to decrease in the later stage. It was impossible to establish a unifying approach in the analysis of crack growth begabior of 2024-T3 and 6:4 brass using the maximum stress intensity factor because of their dependence on stress level. But if the elastic strain and cyclic total strain intensity factor range were applied to obtain the growth rate of surface fatigue cracks of the materials, the data were found to be nearly coincided.

  • PDF

An Effect of Warm Shot Peening on the Fatigue Behavior of Suspension Coil Springs (현가장치용 코일스프링의 피로특성에 미치는 온간쇼트피닝 가공의 영향)

  • Kim, Ki-Jeon;Chung, Suk-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1209-1216
    • /
    • 2002
  • The requirements of coil spring fer higher fatigue strength have been increased to achieve the weight reduction of a vehicle. As the possible increase in fatigue strength by using the conventional shot peening treatment is found to be limited, it is necessary to modify the shot peening treatment. The warm shot peening is a shot peening treatment carried out within warm temperature range. The aim of this paper is to analyze some experimental results concerned with the effect of warm shot peening and to discuss the mechanism of warm shot peening in detail. By the results of rotating bending fatigue test, the fatigue strength of test specimen increases up to 23.8% in the production condition of warm shot peening at 200$\^{C}$ compared with conventional shot peening. The major reason why the warm shot peening is effective to the improvement of fatigue strength is the increase of a compressive residual stress distribution, which can be caused by more effective deformation under the condition of warm temperature.

Behavior of Initiation and Propagation of Fatigue Cracks around Microholes (미소원공주위의 피로크랙발생전파 거동에 관한 연구)

  • 송삼홍;오환석
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.74-82
    • /
    • 1987
  • This study has been made to investigate into the behavior of fatigue limit, of fatigue crack initiation, and of fatigue crack propagation under the condition of rotating bending stress; specifically on the independency of stress field as well as the crack behavior of surface micro hole defect, which is made artificially through the specimen. The results obtained can be summarized as followa; 1) For the single micro hole defect, initiation of fatigue crack is occurred at both tips of microhole defect simultaneosly along the slip which are produced in the range of maximum principal stress arround micro hole defect independent of the size of micro hole defect. 2) For the neighbored deuble micro hole defects with equal size, in the range ($\frac{L}{r}$)ratio $\gtrsim$ 3 defined as the size of micro hole defect(2r) to the distance between the centers of micro hole defects (2L), the crack behavior of the micro hole defects is same as single one. However, for the range of $\frac{L}{r}$<3, the interference effect becomes significant as the ratio approaches to 1.

  • PDF

A Study on the Durability of Al-10%Si-0.3Mg Castings with Weld Repair (Al-10%Si-0.3%Mg 주조재의 보수용접에 따른 내구특성 연구)

  • Kim, Kyung-Hyun;Lee, Jung-Moo
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.541-547
    • /
    • 1994
  • The effects of weld repair on the durability in Al-10%Si-0.3%Mg castings were evaluated. The strength and fracture toughness in fusion zone were higher than those in the base metal by rapid cooling of fusion zone after welding. There were no significant differences between fatigue properties in castings and weld repaired specimen as the results of low cycle fatigue and rotating bending fatigue test. Therefore it was concluded that weld repairing did not have any significant effect on the mechanical properties of castings.

  • PDF

A study of cumulative damage of carbon steel(SM45C) welded joint by block load with p-distribution (P 분포 블록하중에 의한 용접부의 누적피노 손상에관한 연구)

  • 표동근;안태환;신광철
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.40-47
    • /
    • 1991
  • The most fatigue tests carried out under the either stress or strain control, but machines and structures had taken variable stress. This variable stress was treated as statistics based on p-type distributions. In this paper, the cumulative fatigue damage of SM45C round bar specimens having a center hole resulting from block loading with p-distributions in rotating bending conditions, is presented. The value of p was changed in the range from 0.25 to 1; 0.25, 0.5, 0.75, 1. The following conclusions were obtained through the constant stress amplitude experiments and the block loading experiments. (1) In constant loading test, fatigue life was affected by cyclic rate. From experimental data, N$_{f}$ (100cpm)/N$_{f}$(3000cpm)equal to 0.56. (2) In case of the cyclic rate 100cpm and 3000cpm, at the high stress amplitude level the crack propagation life N$_{*}$f is longer than the low stress amplitude level. (3) Miner's hypothesis may be valid for p=0.75 and prediction of fatigue life by Haibach's method agree with experimental data well for the case p=0.5, while the modified Miner's method agree with experimental data well for the case p=0.25.5.

  • PDF

A Study on Growth Characteristics of the Surface Fatigue Crack Propagated from a Small Surface Defect in Carbon Steels (탄소강재(炭素鋼材)의 작은 표면결함(表面缺陷)에서 성장(成長)하는 표면피로(表面疲勞)균열의 성장특성(成長特性)에 관한 연구(硏究))

  • Chang-Min,Suh;Yong-Goo,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.35-42
    • /
    • 1984
  • In the present study, rotating bending fatigue tests have been carried out in three kinds of carbon steel specimens; an annealed low carbon steel, an annealed high carbon steel and quenched-tempered high carbon steel; with a small artificial surface defect that might exist in real structures. Fatigue crack lengths have been observed by a method of replication in order to investigate the growth characteristic of fatigue crack in the viewpoints of strength of materials and fracture mechanics. The main results obtained are as follows: 1) The effect of a small surface defect upon the reduction of fatigue limit is considerably large, and the rate of fatigue limit reduction grows in the following order; annealed low carbon steel(mild steel), annealed high carbon steel, quenched-tempered high carbon steel. 2) When the growth rate of surface crack length(2a) was investigated in the viewpoints of fracture mechanics based upon $ ${\Delta}K_{\varepsilon}$, the dependence of stress level and of surface defect size disappear, and there exists a linear relationships between d(2a)/dN and ${\Delta}K_{{\varepsilon}t},\;\Delta_{{\varepsilon}t}\sqrt{{\pi}a}$, on log. plot, i.e, $d(2a)/dN={C{\cdot}{\Delta}K_{\varepsilon}}^3_t$, where ${\Delta}_{{\varepsilon}t}\sqrt{{\pi}a}$ a is the cyclic total strain intensity factor range.

  • PDF

Behavior of Fatigue Crack around Micro-Hole and Ferrite Grain Size (微小圓孔材의 疲勞크랙擧動 과 페라이트 結晶粒度)

  • 송삼홍;오환섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.421-429
    • /
    • 1985
  • This study has been made to investigate into the relation between fatigue crack behavior and ferrite grain size. As experimental observation of the low-carbon steel specimen with the drilled micro-hole under rotating bending stress was made to accomplish this investigation. Obtained results are as follows; (1) The fatigue limit of micro-hole depends upon the magnitude of ferrite grain size, as indicated by the Hall-Petch formula. (2) The fatigue crack occurring around the micro-hole is of shear type, and the frequency of fatigue crack initiation depends upon the ferrite grain size. (3) The magnitude of ferrite grain size affects the behavior of fatigue crack propagation up to the crack size of 0.3mm. The effect, however, is negligible for the crack size larger than 0.3mm.

A Study on the Propagation Behaviour of the Fatigue Cracks in Rolled Steel Plates (압연강판(壓延鋼板)의 피로균열(被虜龜裂) 전파거동(傳播擧動)에 대(對)한 연구(硏究))

  • C.S.,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.43-58
    • /
    • 1975
  • There are many reports on fatigue crack of metallic materials but most of them relate crack propagation rate to stress intensity factor. The problem of crack propagation is not yet clarified, especially the bridge between micro and macro phenomena In this experiment rotating bending fatigue tests have been carried out with smoothed specimen of rolled steel plates including 0.2% carbon under application of three stress conditions to investigate the slip band and the crack propagation behaviour. The results obtained are as follows; 1) The length of cracks which have grown at initial crack tips can be expressed as follows; $l=Ae^{BNr}$(A,B: constant, $N_r$: cycle ratio) $\frac{dl}{dN}=\frac{AB}{N_f}{\cdot}e^{BNr}$($N_f$:fatigue life) 2) The ratio of slipped grain number to total grain number is $S_f=7{\sigma}-5.6$-5.6{\sigma}_c$($\sigma$: stress amplitude) (${\sigma}_c$: fatigue limit) 3) When the fatigue process transfers from Stage I to Stage II, the crack which propagates into specimen changes its direction from that of the maximum shear stress to the direction of perpendicular to principal stress and this is same in the circumferential direction of specimen. the crack propagation behaviors of both sides of a crack are different each other when they approach to the grain boundary.

  • PDF

Quantitative Study on Threshold Condition of Critical Non-propagating Crack (임계정류피로크랙의 하한계 전파조건의 정량적 고찰)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.17-23
    • /
    • 2010
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the micro-structure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the "critical non-propagating crack length" It is found that the reduction of the endurance limit of their particular micro-structures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress ${\sigma}_{wo}$ and the critical non-propagating crack length $L_c$ can be written as ${\sigma}_{wo}{^m}{\cdot}L_c=C$ where m,C is constant. Further experiments were carried out on cyclic loading history on the length of critical non-propagating crack. It shown that the length of critical non-propagating crack is closely related to cyclic loading history.

  • PDF

Characterization of Contact Surface Damage in a Press-fitted Shaft below the Fretting Fatigue Limit (피로한도 이하에서 발생하는 압입축의 접촉손상 특성)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Ham, Young-Sam;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.42-47
    • /
    • 2010
  • In this paper, the characteristics of contact surface damage due to fretting in a press-fitted shaft below the fretting fatigue limit are proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests of small scale press-fitted specimen were carried out by using rotating bending fatigue test machine. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that fretting fatigue cracks were initiated even under the fretting fatigue limit on the press-fitted shafts by fretting damage. The fatigue cracks of press-fitted shafts were initiated from the edge of contact surface and propagated inward in a semi-elliptical shape. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. After steep increasing, the increase of wear rate is nearly constant under the load condition below the fretting fatigue limit. It is thus suggested that the fretting wear must be considered on the fatigue life evaluation because the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in the press-fitted structures.