• Title/Summary/Keyword: Rotating Activated Bacillus Contactors (RABC)

Search Result 2, Processing Time 2.435 seconds

The Bacterial Community Structure in Biofilms of the RABC Process for Swine Butchery Wastewater Treatment (돼지 도축폐수 처리를 위한 RABC 공정의 생물막 세균군집 구조)

  • Sung, Gi-Moon;Lee, Dong-Geun;Park, Seong-Joo
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.56-65
    • /
    • 2011
  • Culture-independent microscopic observations and 16S rDNA analyses were applied to describe the bacterial community inherent to the biofilm structure of the RABC (Rotating Activated Bacillus Contactors) process for swine butchery wastewater treatment. The ratios of Gram-positive bacterial counts to total bacterial counts of the RABC process were significantly increased in the last aeration tank as well as returned sludge, while those of the existing A2O (Anaerobic-Anoxic-Oxic) process maintained constant from aeration tanks to returned sludge. Totally nine phyla were recovered by 16S rDNA analysis, two of which were major groups: the Proteobacteria (64.1%) and the Actinobacteria (18.4%). The third major group was the endospore-forming Firmicutes (5.4%). The remaining six minor groups are the Bacteroidetes (3.3%), the Chlorobi (2.2%), the Nitrospirae (1.1%), the Chlorofleix (1.1%), the Acidobacteria (1.1%), and the Fusobacteria (1.1%). The ratio of endospore-forming bacteria was 19.4%, which was composed of the members of the Firmicutes phylum (5.4%) and the Intrasporangiaceae family (14.0%) of the Actinobacteria phylum. Nitrifying and denitrifying related- and phosphorus accumulating related-sequences were composed of 6.5% and 5.4% of total community, respectively, these could mean the high capacity of the RABC process to remove odor compounds and reduce eutrophication by efficient removing inorganic nutrients.

Comparison of Bacterial Numbers and Treatment Efficiencies in Bioreactors of Various Advanced Wastewater Treatment Processes (다양한 고도폐수처리공정에서의 생물반응조 세균수와 처리효율과의 비교)

  • Sung, Gi Moon;Cho, Yeon-Je;Kim, Sung Kyun;Park, Eun Won;Yu, Ki Hwan;Lee, Sang-Hyeon;Lee, Dong-Geun;Park, Seong Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.329-334
    • /
    • 2009
  • Bacterial numbers, such as endospore-formers, and treatment efficiencies were investigated for Rotating Activated Bacillus Contactors (RABC) and other advanced wastewater treatment processes including anaerobic-anoxic-oxic (A2O), sequencing batch reactor (SBR) and biological aerated filter (BAF). Endospore-forming bacterial numbers in the RABC showed 129-fold higher levels than those of the existing advanced systems. RABC process demonstrated the highest bacterial numbers in its bioreactors (paired t-test, p<0.01). RBC biofilms and aeration tanks of the RABC system showed 131- and 476-fold higher than other existing advanced processes, respectively. Mean treatment efficiencies of the existing systems were 83.5% for chemical oxygen demand (COD), 59.1% for total nitrogen (TN) and 76.8% for total phosphorus (TP). However, RABC process removed 96.9% for COD, 96.9% for TN and 91.9% for TP for highly concentrated food wastewater (COD>1,500 mg/L, TN>150 mg/L, TP>50 mg/L). Treatment efficiency was significantly reduced when the numbers of Bacillus genus in the bioreactors decreased below $10^6CFU/mL$. The automated RABC (A-RABC), in which dissolved oxygen concentrations are automatically controlled, showed higher treatment efficiencies compared to the RABC process. The RABC system maintained sufficient bacterial numbers for the effective treatment of highly concentrated food wastewater. Moreover, final effluent was in agreement to water quality standards.