• Title/Summary/Keyword: Rotary-Wing Aircraft

Search Result 45, Processing Time 0.025 seconds

Rotor Performance Optimization of the Canard Rotor Wing Aircraft (Canard Rotor Wing 항공기의 로터 성능 최적화 연구)

  • Jeon, Kwon-Su;Lee, Jae-Woo;Byun, Yung-Hwan;Yu, Yung H.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.105-114
    • /
    • 2008
  • In this study, the sizing and performance analysis program is developed for the canard rotor wing(CRW) aircraft which operates in dual modes (fixed wing mode and rotary wing mode). The developed program is verified for both fixed wing and rotary wing modes using the existing aircraft data and the design optimization formulation is made to perform the reconnaissance mission. For the canard rotor wing aircraft optimization , multi-objective function is constructed to consider both the fixed wing mode and rotary wing mode the weighting factor. For six design cases with different weighting factors and different design constraints, the optimization is performed and improved rotor design results are derived.

Design and Optimization Study on the Multi Flight Modes Canard Rotor/Wing Aircraft with Development of Sizing Program (사이징 프로그램 개발을 통한 다중 비행 모드 Canard Rotor/Wing 항공기의 형상 최적설계)

  • Kim, Jong-Hwan;Kim, Min-Ji;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.22-31
    • /
    • 2005
  • A design study was conducted for a new concept aircraft(Canard Rotor/Wing: CRW) that has the capability of dual mode flight, a rotorcraft and a fixed wing mode. The CRW can show a vertical take off/landing and a high speed/efficiency cruise performance simultaneously. It is not surprising to develop a new sizing code for this class of aircraft because conventional sizing codes developed solely for either the rotary wing or the fixed wing aircraft are not adequate to design a dual mode aircraft operated both by the rotary wing through tip jet effux and the fixed wing lift. Thus, a new design code was developed based on the conventional sizing code by adding some features including rotor performance, duct flow, and engine flow analysis, hence could eventually predict the performance of reaction driven rotor, the flight performance and the flight characteristics. The various design parameters were investigated to find their influences on the flight performance then, a small UAV(Unmanned Aircraft Vehicle) of 1500 lbs class was optimally designed to have minimum weight using the developed sizing code.

An Analytical Approach to the Flight Safety of Split Yaw Swaged Rod for a Rotor Craft (회전익기 요 스웨지드 로드 분할에 따른 비행 안전성에 대한 해석적 접근)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook;Yoon, Jae-Huy;Yang, Pil-Joo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.74-80
    • /
    • 2017
  • As for A rotary wing aircraft, the configuration change about split yaw swaged rod was executed to improve hit treat capability for dealing with a long rod. The purpose of this study was to analyze if or not the quality of the split yaw swaged rod was obtained, and so the flight safety was ensured or not. Buckling analysis, Coupling Thread Strength Analysis, Thermal Stress analysis and Rod Natural Frequency Analysis were executed for structural analysis. The results of the analysis were presented that the split rod had the sufficient margin of safety and so there were no anomalies in the limit load and no failures in the ultimate load. And there were no resonances in result of natural frequency analysis. In conclusion, this study showed that the split yaw swaged rod had structural safety, so flight safety of rotary wing aircraft was secured and there was no problem in aircraft operation. It is certain that the technology of splitting the yaw swage rod will contribute to the operational Safety of the rotary wing aircraft in the future.

Design Improvement about Abnormal Lighting of Anti-Collision Light for a Rotary-wing Aircraft (회전익 항공기 충돌방지등의 이상점등에 대한 설계 개선)

  • Kim, Young Mok;Seo, Young Jin;Lee, Yoon Woo;Lee, Joo Hyung;Choi, Doo-Hyun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.79-86
    • /
    • 2019
  • An anti-collision light of a rotary-wing aircraft is used for the purpose of preventing collision during the operation of an aircraft and is a key component to ensure flight safety. The anti-collision lights of the Korean Utility Helicopter (KUH) consist of upper and lower lights, and the power supply of anti-collision lights mounted on the aircraft. The anti-collision light is designed as a dual structure capable of brightness control and selective lighting. During the operation after delivery of the aircraft, abnormal lighting of anti-collision light occurred. In this paper, a comprehensive review of the aircraft system and component level was conducted to solve these phenomena at first. Then, the causes of anti-collision light anomalies were analyzed and the design changes are presented. The validity of design changes has been verified through the component and aircraft system ground/flight test.

An Improvement Study on Stick-Slip Behavior of Nose Landing Gear for Rotary Wing Aircraft (회전익 항공기 전륜착륙장치 단속거동 현상 개선연구)

  • Choi, Jae Hyung;Chang, Min Wook;Lee, Yoon-Woo;Yoon, Jong Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.61-67
    • /
    • 2017
  • The Nose Landing Gear(NLG) of Rotary Wing Aircraft is an essential equipment in Landing System for pilot to perform a flight mission. It supports the fuselage at ground and absorbs the impact from the ground when landing, thereby, these functions sustain operational capability for pilot and crew. However, the A aircraft caused stick-slip behavior when it was stationed on the ground. Therefore, this paper summarizes pilot comment in operation which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

Error Rate and Flight Characteristics of Rotary-Wing Aircraft Pilots Under Low Visibility Conditions (저시정 조건에서 회전익 항공기 조종사 에러 발생율 및 비행특성)

  • Se-Hoon Yim;Young Jin Cho
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.60-67
    • /
    • 2024
  • The majority of civil aviation accidents are caused by human factors, and especially for rotary-wing aircraft, accidents often occur in situations where pilots unexpectedly or unintentionally enter into instrument meteorological conditions (IIMC). This research analyzed the error rates of rotary-wing aircraft pilots under low visibility conditions from various angles to gain insights into flight characteristics and to explore measures to reduce accidents in IIMC situations. The occurrence rate of errors by pilots under low visibility conditions was examined using a flight simulator equipped with motion, with 65 pilots participating in the experiment. Flight data obtained through the experiment were used to aggregate and analyze the number of errors under various conditions, such as reductions in flight visibility, the presence or absence of spatial disorientation, and the pilot's qualifications. The analysis revealed peculiarities in flight characteristics under various conditions, and significant differences were found in the rate of error occurrence according to the pilot's qualification level, possession of instrument flight rules (IFR) qualifications, and during different phases of flight. The results of this research are expected to contribute significantly to the prevention of aircraft accidents in IIMC situations by improving pilot education and training programs.

A study on the developmental method of parachute and air stabilizer for light weight torpedo (경어뢰용 낙하산 조립체 개발 방법에 관한 연구)

  • 신용재
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.137-146
    • /
    • 2001
  • According to the advanced development of Light Weight Torpedo, the overall items related with the parachute type and gore layout and air stabilizer of the parachute for fixed and rotary wing aircraft are described in this paper. Also, the drag-area which should satisfy the firing envelope, parachute inflation characteristics, stability of parachute and torpedo in airdropping, water entry impact on torpedo and parachute constituted the principle design factors. The important trial and errors occurred in the step of performance of the parachute for fixed and rotary wing aircraft are investigated and analyzed.

  • PDF

Aerodynamic Noise Analysis Using the Permeable Surface for UH-1H Rotor Blade in Hovering Flight Condition (UH-1H 로터 블레이드의 제자리 비행 시 투과면을 이용한 원방 소음 해석)

  • Kim, Ki Ro;Park, Min Jun;Park, Soo Hyung;Lee, Duck Joo;Park, Nam Eun;Im, Dong Kyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.376-384
    • /
    • 2018
  • The aerodynamic far-field noise was computed by an acoustic analogy code using the permeable surface for the UH-1H rotor blade in hover. The permeable surface surrounding the blade was constructed to include the thickness noise, the loading noise, and the flow noise generated from the shock waves and the tip vortices. The computation was performed with compressible three-dimensional Euler's equations and Navier-Stokes equations. The high speed impulsive noise was predicted and validated according to the permeable surface locations. It is confirmed that the noise source caused by shock waves generated on the blade surface is a dominant factor in the far-field noise prediction.

Neural Networks Based Adaptive Flight Controller Design and Handling Quality Evaluation for Tiltrotor Aircraft (신경회로망을 이용한 틸트로터 항공기의 적응 비행제어기 설계 및 비행성 평가)

  • Lee, Ki Young;Kim, Byoung Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • An application of adaptive flight controller is required for the non-linear and high uncertain system that configuration of tiltrotor aircraft is dramatically changed from rotary wing mode to fixed wing mode. In this paper, the applicable adaptive controller for the tiltrotor aircraft was designed using Neural Networks and DMI (Dynamic Model Inversion). The performance of the SCAS (Stability and Control Augmentation System) was simulated against manned military specification, using the fullscale model of 'Smart UAV(Unmanned Aerial Vehicle)' developed by Korea Aerospace Research Institute. And Neural Networks based adaptive controller was verified through its whole operating envelope using the established HQ (Handling Quality) criteria.

Aerodynamic Analysis on Wing-Nacelle of Tiltrotor UAV (틸트로터 무인기의 날개-나셀 공력해석)

  • Choi Seong Wook;Kim Cheol Wan;Kim Jai Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.27-34
    • /
    • 2004
  • In the Smart UAV Development Program, one of the 21c Frontier R&D Program, the tiltrotor has been studied as the concept of vehicle. The tiltrortor aircraft take-off and land in rotary wing mode like conventional helicopter, and cruise in fixed wing mode like conventional propeller airplane. For the conversion of the flight mode from helicopter to airplane, the nacelle located at wing tip has to be tilted from about 90 degrees of helicopter mode to about 0 degree of airplane mode. In this study, the aerodynamic characteristics of the wing with tilted nacelle is investigated using computation fluid dynamics technique. In order to feature out aerodynamic interferences between wing and nacelle, the flow calculations are conducted for the wing and the nacelle separately and for the combined geometry of wing and nacelle, respectively. Through this computations, not only the aerodynamic data-base for the wing-nacelle is constructed but also its contribution to the configuration design of the wing-nacelle is anticipated.

  • PDF