• Title/Summary/Keyword: Rotary Inertia

Search Result 179, Processing Time 0.02 seconds

Bridge-Vehicle interaction Analysis of Suspension Bridges Considering the Effects of the Shear Deformation (전단변형효과를 고려한 현수교의 교량-차량 상호작용 해석)

  • Kim, Moon-Young;Lim, Myoung-Hun;Kwon, Soon-Duck;Kim, Ho-Kyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.1-11
    • /
    • 2004
  • In the previous study(1), the finite element method was used for the vertical vibration analysis of suspension bridge considering the effects of the shear deformation and the rotary inertia under moving load. This study firstly performs the eigenvalue analysis for the free vertical vibration of suspension bridge using FEM analysis. Next the equations of motion considering interaction between suspension bridge and vehicles/train are derived using mode superposition method. And dynamic analysis was performed using the Newmark $\beta$ Method. Finally through the numerical examples, the dynamic responses of bridges by this study are investigated.

Improved Curved Beam Theory for Vibration and Deflection Analyses (진동 및 처짐해석을 위한 개선된 곡선보이론)

  • Kim, Nam-Il;Choi, Jung-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.123-132
    • /
    • 2010
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the displacement field is expressed by introducing displacement parameters defined at the centroid and shear center axes, respectively. Next the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are rigorously derived by degenerating the energies of the elastic continuum to those of curved beam. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by centroid formulation, previous research and ABAQUS's shell elements.

  • PDF

Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.343-371
    • /
    • 2016
  • In this paper thermo-mechanical vibration analysis of a porous functionally graded (FG) Timoshenko beam in thermal environment with various boundary conditions are performed by employing a semi analytical differential transform method (DTM) and presenting a Navier type solution method for the first time. The temperature-dependent material properties of FG beam are supposed to vary through thickness direction of the constituents according to the power-law distribution which is modified to approximate the material properties with the porosity phases. Also the porous material properties vary through the thickness of the beam with even and uneven distribution. Two types of thermal loadings, namely, uniform and linear temperature rises through thickness direction are considered. Derivation of equations is based on the Timoshenko beam theory in order to consider the effect of both shear deformation and rotary inertia. Hamilton's principle is applied to obtain the governing differential equation of motion and boundary conditions. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of several parameters such as porosity distributions, porosity volume fraction, thermal effect, boundary conditions and power-low exponent on the natural frequencies of the FG beams in detail. It is explicitly shown that the vibration behavior of porous FG beams is significantly influenced by these effects. Numerical results are presented to serve benchmarks for future analyses of FG beams with porosity phases.

Vibration Analysis of Composite-VEM Thin-walled Rotating Beam Using GHM Methodology (GHM 기법을 이용한 회전하는 복합재-VEM 박판보의 진동해석)

  • 박재용;박철휴;곽문규;나성수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.639-647
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic material technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The main structure is modeled as a composite thin-walled beam Incorporating a number of nonclassical features such as transverse shear. anisotropy of constituent materials, and rotary inertia etc. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on dynamic response of a thin-walled beam structure exposed to external time-dependent excitation.

Free and forced analysis of perforated beams

  • Abdelrahman, Alaa A.;Eltaher, Mohamed A.;Kabeel, Abdallah M.;Abdraboh, Azza M.;Hendi, Asmaa A.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.489-502
    • /
    • 2019
  • This article presents a unified mathematical model to investigate free and forced vibration responses of perforated thin and thick beams. Analytical models of the equivalent geometrical and material characteristics for regularly squared perforated beam are developed. Because of the shear deformation regime increasing in perforated structures, the investigation of dynamical behaviors of these structures becomes more complicated and effects of rotary inertia and shear deformation should be considered. So, both Euler-Bernoulli and Timoshenko beam theories are proposed for thin and short (thick) beams, respectively. Mathematical closed forms for the eigenvalues and the corresponding eigenvectors as well as the forced vibration time response are derived. The validity of the developed analytical procedure is verified by comparing the obtained results with both analytical and numerical analyses and good agreement is detected. Numerical studies are presented to illustrate effects of beam slenderness ratio, filling ratio, as well as the number of holes on the dynamic behavior of perforated beams. The obtained results and concluding remarks are helpful in mechanical design and industrial applications of large devices and small systems (MEMS) based on perforated structure.

Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT

  • Semmah, Abdelwahed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.89-98
    • /
    • 2019
  • In this work, the thermal buckling characteristics of zigzag single-walled boron nitride (SWBNNT) embedded in a one-parameter elastic medium modeled as Winkler-type foundation are investigated using a nonlocal first-order shear deformation theory (NFSDT). This model can take into account the small scale effect as well as the transverse shear deformation effects of nanotubes. A closed-form solution for nondimensional critical buckling temperature is obtained in this investigation. Further the effect of nonlocal parameter, Winkler elastic foundation modulus, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia on the critical buckling temperature are being investigated and discussed. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of boron nitride nanotubes.

Vibration Analysis of Stiffened Corrugated Composite Plates (보강된 적층 복합재료 주름판의 진동해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.377-382
    • /
    • 2020
  • The free vibration characteristics of corrugated laminated composite plates with axial stiffeners is investigated using the Rayleigh-Ritz method. The plate is stiffened by beams with open cross-section area. The equivalent homogenization model is used for the corrugated laminated composite plates. This homogenization model is treated a corrugated plate as an orthotropic plate that has different material properties in two perpendicular directions. The motion of equivalent plate is represented on the basis of the first order shear deformation theory (FSDT) to account for the effect of rotary inertia and transverse shear deformation. Stiffeners are considered as discrete elements to predict the local vibration mode to be generated by the presence of stiffeners. To validate the proposed analytical approach, natural frequencies and vibration mode shapes from the analytical method are compared with those from the FEA by ANSYS.

Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

  • Alile, Mohsen Rezvani;Foyouzat, Mohammad Ali;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.757-770
    • /
    • 2022
  • In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for plates of higher thicknesses. Moreover, it is shown that CPT is unable to properly capture the variation of the plate thickness, thereby diminishing the accuracy as the thickness increases. The outcomes also indicate that the presence of a foundation contributes more to the dynamic response of thin plates in comparison to moderately thick plates. Furthermore, the findings suggest that the performance of the moving force approach for a moderately thick plate, in contrast to a thin plate, appears to be acceptable and it even provides a much better estimation in the presence of a foundation.

Dynamic analysis of a rotating tapered composite Timoshenko shaft

  • Zahi Rachid;Sahli Abderahmane;Moulgada Abdelmadjid;Ziane Noureddine;Refassi Kaddour
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.429-441
    • /
    • 2023
  • This research presents an advanced finite element formulation for analyzing the vibratory behaviour of tapered composite shaft rotors, taking into account the impact of the draft angle on the stiffness of the composite shaft laminate. The vibration response of the shaft rotating around its axis is studied using both the finite element hierarchical method and the classical finite element formulation, based on the theory of transverse shear deformation, rotary inertia, gyroscopic effect, and coupling effect due to the stratification of the composite layers of the shaft. The study also includes the development of a program to calculate the Eigen frequencies and critical speeds of the system, and the obtained results are compared with those available in the literature. This research provides valuable insights into the vibratory behaviour of tapered composite shaft rotors and can be useful for designing and optimizing such structures in various industrial applications.

A study on bio-signal process for prosthesis arm control (인공의수의 능동 제어를 위한 생체 신호 처리에 관한 연구)

  • Ahn, Young-Myung;Yoo, Jae-Myung
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.28-36
    • /
    • 2006
  • In this paper, an algorithm to classify the 4 motions of arm and a control system to position control the prosthesis are studied. To classify the 4 motions, we use flex sensors which is electrical resistance type sensor that can measure warp of muscle. The flex sensors are attached to the biceps brchii muscle and coracobrachialis muscle and the sensor signals are passed the sensing system. 4 motion of the forearm - flexion and extension, the pronation and supination are classified from this. Also position of forearm is measured from the classified signals. Finally, A two D.O.F prosthesis arm with RC servo-motor is designed to verify the validity of the algorithm. At this time, fuzzy controller is used to reduce the position error by rotary inertia and noise. From the experiment, the position error had occurred within about 5 degree.