• Title/Summary/Keyword: Ross 308

Search Result 154, Processing Time 0.025 seconds

Microencapsulation of Lactobacillus plantarum MB001 and its probiotic effect on growth performance, cecal microbiome and gut integrity of broiler chickens in a tropical climate

  • Sasi Vimon;Kris Angkanaporn;Chackrit Nuengjamnong
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1252-1262
    • /
    • 2023
  • Objective: Microencapsulation technologies have been developed and successfully applied to protect the probiotic bacterial cells damaged by environmental exposure. This study aimed to investigate the effects of microencapsulation of Lactobacillus plantarum MB001 on the growth performance, ileal nutrient digestibility, jejunal histomorphology and cecal microbiome of broiler chickens in a tropical climate. Methods: A total of 288 one-day-old female broilers (Ross 308) were randomly allocated into 4 groups (6 replicates of 12 birds). Treatments included, i) a basal diet (NC), ii) NC + avilamycin (10 mg/kg) (PC), iii) NC + non-encapsulated L. plantarum MB001 (1×108 colony-forming unit [CFU]/kg of diet) (N-LP), iv) NC + microencapsulated L. plantarum MB001 (1×108 CFU/kg of diet) (ME-LP). Results: Dietary supplementation of ME-LP improved average daily gain, and feed conversion ratio of broilers throughout the 42-d trial period (p<0.05), whereas ME-LP did not affect average daily feed intake compared with NC group. Both N-LP and ME-LP improved apparent ileal digestibility of crude protein and ether extract compared with NC group (p<0.05). The broilers fed ME-LP supplemented diet exhibited a beneficial effect on jejunal histomorphology of villus height (VH), crypt depth (CD) and villus height to crypt depth ratio (VH:CD) of broilers compared to NC group (p<0.05). At the phylum level, Firmicutes was enriched (p<0.05) and Proteobacteria was decreased (p<0.05) only in the ME-LP group. At the genus level, the ME-LP diets increased (p<0.05) the number of both Lactobacillus and Enterococcus compared to NC, PC, and N-LP groups (p<0.05). Conclusion: Microencapsulation assists the efficient functioning of probiotics. ME-LP could be potentially used as a feed additive for improvement of cecal microbiota, gut integrity and nutrient utilization, leading to better performance of broilers.

Effects of crude oligosaccharide extract from agricultural by-products on the performance and gut development of broilers

  • Janjira Sittiya;Suphavadee Chimtong;Phumipat Sriwarcharameta
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.891-898
    • /
    • 2023
  • Objective: This study aimed to determine the effect of crude oligosaccharide extract from coconut milk meal (CMM) and spent tea leaves (ST) on the performance and gut development of broiler chickens. Methods: A total of 240 one-day-old unsexed broiler chicks (ROSS 308) were raised on litter-floored pens and had ad libitum access to water for 42 days. The experiment was conducted on chicks fed with basal diet (CON), commercial mannan-oligosaccharides (MOS), crude oligosaccharide extract from CMM, and crude oligosaccharide extract from ST. The experimental diets were supplemented with 2 and 1 g/kg oligosaccharides during the starter and grower periods, respectively. Results: The body weight gain (BWG) of birds in the MOS group was higher than that of birds in the other groups (p<0.05) in the starter period. However, during the grower period, ST significantly improved the BWG compared to the MOS (p<0.05). MOS, CMM, and ST showed no influence on the carcass and visceral organ weight and the weight and length of intestine (p>0.05). The digestibility of gross energy was greater (p<0.05) in the CMM group than in the CON group during the grower period. Morphological changes were absent in the dietary treatments (p>0.05). Conclusion: The improvements in the growth performance were partly driven by nutrient digestibility of such oligosaccharides having prebiotic properties. This result can indicate that supplementing broiler diets with crude oligosaccharides from CMM and ST had no negative effect on the growth performance and gut development of broilers.

Effect of dietary metallo-protease and Bacillus velezensis CE 100 supplementations on growth performance, footpad dermatitis and manure odor in broiler chickens

  • Park, Cheol Ju;Sun, Sang Soo
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1628-1634
    • /
    • 2022
  • Objective: This study focused on the effect of dietary metallo-protease and Bacillus velezensis CE 100 on growth performance, carcass parameters, intestinal microflora, footpad dermatitis (FPD), and manure odor in broiler chickens. Methods: One hundred-ten (two-day-old Ross 308) broiler chicks were randomly assigned to five groups with two replicate pens. The dietary treatments were divided to control, metallo-protease groups (A1, added with 0.1%; A2, added with 0.2%) and B. velezensis CE 100 groups (B1, added with 0.5%; B2, added with 1.0%). Results: The feed intake was decreased in A1 and B2 compared to the other group (p<0.05). The liver weight was lower in B2 than in A2 (p<0.05). The Salmonella in the cecum was decreased in A2 compared to control and A1 (p<0.05). However, the lactic acid bacteria were increased in all treatments (p<0.05). The litter moisture content was decreased in A2, B1, and B2 (p<0.05). The litter quality visual score was increased in all treatments (p<0.05). The FPD score and prevalence were reduced in all treatments (p<0.05). The (CH3)2S emission was decreased in all treatments (p<0.05). Conclusion: The present study indicated that both additives improve litter quality and reduce the incidence of FPD. These findings suggest that dietary metallo-protease and B. velezensis CE 100 have the potential to improve the broiler chickens' welfare.

Effects of Spraying Illite and Zeolite on Litter Quality, Microflora, and Footpad Dermatitis in Broiler Litter

  • Sehyun Park;Jihwan Lee;Dongcheol Song;Seyeon Chang;Jaewoo An;Kyeongho Jeon;Hyuck Kim;Jinho Cho
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • A total of 192 one-day-old Ross 308 broilers (initial body weight: 31.30±0.41 g) were used in this experiment for 28 days. Treatments were as follows: basal rice husk (CON), rice husk + 1% illite (T1), rice husk + 1% zeolite (T2), and rice husk + 0.5% illite + 0.5% zeolite (T3). The percentage of illite and zeolite was calculated on a weight of litter. Each treatment had four replicates, with 12 birds per pen. Each pen was provided with 5 kg of rice husk as litter. Litter moisture content was significantly decreased (P<0.05) in the T1, T2, and T3 groups compared to CON group at week 4. In litter nitrogen, the T1 group showed significantly lower (P<0.05) litter nitrogen content than the other groups at weeks 1, 2, and 3. Also, the T3 group showed a significantly lower (P<0.05) litter nitrogen content than the CON and T2 groups at weeks 2 and 3. The counts of E. coli in the litter were significantly decreased (P<0.05) in the T1 group compared to the CON group at weeks 2 and 3. Moreover, the counts of Salmonella in the litter were significantly decreased (P<0.05) in the T1 group compared to the CON group at week 4. The FPD score significantly decreased (P<0.05) in the T1 group compared to the CON group. In conclusion, spraying illite could be an ideal way to improve litter quality and decrease FPD in broilers.

Effects of a new generation of fish protein hydrolysate on performance, intestinal microbiology, and immunity of broiler chickens

  • Amir Hossein Alizadeh-Ghamsari;Amir Reza Shaviklo;Seyyed Abdullah Hosseini
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.804-817
    • /
    • 2023
  • This study was conducted to evaluate the effects of co-dried fish protein hydrolysate (CFPH) on broilers performance, intestinal microbiology, and cellular immune responses. Five hundred one-day-old (Ross 308) male broilers were allocated to four treatments with five replicates of 25 birds in a completely randomized design. The experimental treatments included four levels of CFPH (0% as the control, 2.5%, 5%, and 7.5%) in the isonitrogenous and isocaloric diets. During the experiment, body weight (BW) and feed intake (FI) were periodically recorded in addition to calculating average daily gain (ADG), feed conversion ratio (FCR), liveability index, and European broiler index (EBI). In addition, cellular immune responses were evaluated at 30 days of age. On day 42, ileal contents were obtained to examine the microbial population. Based on the findings, Dietary supplementation of 5 and 7.5% CFPH increased the percentage of the thigh while decreasing the relative weight of the gizzard compared to the control group. The highest relative length of jejunum was observed in birds receiving 2.5 and 5% CFPH, and its highest relative weight belonged to birds fed with 5% CFPH. The number of coliforms, enterobacters, and total gram-negative bacteria in the intestines of birds receiving CFPH was less than that of the control group. In general, the application of CFPH in broiler nutrition can decrease the level of soybean meal in diet and it can be considered as a new protein supplement in poultry production. It is suggested to study the incorporation of this new supplement in other livestock's diets.

Effect of dietary betaine supplementation on the liver transcriptome profile in broiler chickens under heat stress conditions

  • Deok Yun Kim;Gi Ppeum Han;Chiwoong Lim;Jun-Mo Kim;Dong Yong Kil
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1632-1646
    • /
    • 2023
  • Objective: The objective of the present study was to investigate the effect of dietary betaine (BT) supplementation on the hepatic transcriptome profiles in broiler chickens raised under heat stress (HS) conditions. Methods: A total of 180 (21-d-old) Ross 308 male broiler chicks were allotted to 1 of 3 treatment groups with 6 replicated cages in a completely randomized design. One group was kept under thermoneutral conditions at all times and was fed a basal diet (PC). Other 2 groups were exposed to a cyclic heat stress condition. One of the 2 groups under heat stress conditions was fed the basal diet as a negative control (NC), whereas the other group was fed the basal diet supplemented with 0.2% BT. All chickens were provided with diets and water ad libitum for 21 d. Following the experiment, the liver samples were collected for RNA sequencing analysis. Results: Broiler chickens in NC and BT group had decreased (p<0.05) growth performance. In the transcriptome analysis, the number of differentially expressed genes were identified in the liver by HS conditions and dietary BT supplementation. In the comparison between NC and PC treatments, genes related to energy and nucleic acid metabolism, amino acid metabolism, and immune system were altered by HS, which support the reason why heat-stressed poultry had decreased growth performance. In the comparison between NC and BT treatments, genes related to lipid metabolism, carbohydrate metabolism, and immune system were differently expressed under HS conditions. Conclusion: HS negatively impacts various physiological processes, including DNA replication, metabolism of amino acids, lipids, and carbohydrates, and cell cycle progression in broiler chickens. Dietary BT supplementation, however, offers potential counteractive effects by modulating liver function, facilitating gluconeogenesis, and enhancing immune systems. These findings provide a basis for understanding molecular responses by HS and the possible benefits of dietary BT supplementation in broiler chickens exposed to HS.

Effect of suitable dietary glycine supplementation on growth production, meat quality, serum parameters, and stress alleviation of broiler under heat stress condition

  • Jiseon Son;Woo-Do Lee;Hyunsoo Kim;Eui-Chul Hong;Hee-Jin Kim;Yeon-Seo Yun;Hwan Ku Kang
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.603-616
    • /
    • 2023
  • This study was conducted to investigate the productivity, meat quality, blood variables, stress responses, and litter quality of broilers offered feed with different levels of Glycine (Gly) supplementation under heat stress condition. A total of 760 one-day-old Ross 308 broiler males were randomly assigned to one of the four dietary treatment groups: (1) basal diet (control; CON); (2) basal diet + Gly 0.1% (Gly 0.1%); (3) basal diet + Gly 0.2% (Gly 0.2%); and (4) basal diet + Gly 0.3% (Gly 0.3%). The environments for all the treatments groups were maintained according to broiler rearing guidelines from day 1 to day 21, and heat stress condition (32 ± 1℃, 60 ±5%) was created from day 22 to the end. The addition of Gly increased weight gain and affected feed intake (p < 0.05). Gly 0.1% group had higher pH and ferric reducing antioxidant power (FRAP) in the chicken meat and lower heterophil (HE)/lymphocyte (LY) ratio in the blood (p < 0.05). In particular, Gly 0.2% treatment group had lower serum corticosterone level (p < 0.05) than other groups. For jejunum morphology, the addition of Gly 0.2% significantly reduced the depth of the crypts (p < 0.05). However, the addition of Gly did not significantly affect litter quality (p > 0.05). In conclusion, the addition of glycine improved productivity and meat quality, alleviated heat stress, and improved intestinal function. Further studies are needed to determine the optimal level and mechanism of action of the additive when ingested.

Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds

  • Yuwares Malila;Tanaporn Uengwetwanit;Pornnicha Sanpinit;Wipakarn Songyou;Yanee Srimarut;Sajee Kunhareang
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • Objective: The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75). Methods: Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35℃±1℃ for 6 h, followed by 26℃±1℃ for 18 h) for 20 days. Control group was raised under a constant temperature of 26℃±1℃. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermal-stressed groups were compared within the same breeds. Results: Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress. Conclusion: The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.

Comparison study between single enzyme and multienzyme complex in distiller's dred grains with soluble supplemented diet in broiler chicken

  • Min-Jin Kwak;Dong-Jin Ha;Min Young Park;Ju Young Eor;Kwang-Youn Whang;Younghoon Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.398-411
    • /
    • 2024
  • Upregulation of the nutritional value of feed is the major target of various studies in the livestock industry, and dietary enzyme supplementation could aid in digesting the nondegrading nutrients of grains in feed ingredients. Dried distillers' grains with solubles (DDGS) is a byproduct of the fermentation process in the beverage industry and can be used as a large supply source of fiber in feed. Therefore, we conducted an experiment with male broiler chickens to investigate the effect of various types of enzymes on DDGS and compare the efficacy of single enzyme and multienzyme complexes on growth performance and gut environments in broiler chickens. We used 420 1-day-old broiler chickens (Ross 308), and they were allotted into 4 dietary treatments with seven replications (CON, corn-soybean meal [SBM] diet; NC, DDGS supplemented diet; SE, 0.05 % of mannanase supplemented DDGS-based diet; MC, 0.10% of multienzyme complex (mannanase and xylanase, glucanase) supplemented DDGS-based diet. The dietary exogenous enzyme in the DDGS-supplemented diet could improve growth performance as much as the growth of the control group, and digestibility of dry matter, crude protein, and gross energy were significantly increased by enzyme addition in groups of chicks fed DDGS-supplementation diet. Moreover, the populations of pathogenic bacteria, coliforms, and Bacteroidetes were significantly decreased by enzyme supplementation, which might lead to improved gut mucus-secreting cells and inflammatory cytokines in the jejunum. Collectively, dietary single enzyme and multienzyme complexes could improve gut environments, including intestinal immune responses and gut microbial population, and lead to improvement of growth performance in broiler chickens.

Effects of Dietary Supplementation of Bacteriophage on Growth Performance, Nutrient Digestibility, Blood Profiles, Carcass Characteristics and Fecal Microflora in Broilers (육계 사료 내 Bacteriophage의 첨가가 생산성, 영양소 소화율, 혈액 특성, 도체 특성 및 분내 미생물 조성에 미치는 영향)

  • Kim, Seung Cheol;Kim, Jae Won;Kim, Jung Un;Kim, In Ho
    • Korean Journal of Poultry Science
    • /
    • v.40 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • This experiment was conducted to investigate the effects of bacteriophage SE supplementation on growth performance, nutrient digestibility, blood profiles, visceral organ weight, meat quality and excreta microflora in broilers. A total of 340 1-d-old ROSS 308 broilers (mixed gender) with an initial average body weight (BW) of $41.71{\pm}0.16$ g were randomly allotted to 4 treatments with 5 replicate pens per treatment and 17 broilers per pen for 31 days. Dietary treatments were: 1) CON, control diet, 2) SE05, CON+0.05% bacteriophage, SE 3) SE10, CON+0.10% bacteriophage SE, and 4) SE15, CON+0.15% bacteriophage SE. During d 15 to 31, broilers fed SE15 diet had a higher (P<0.05) body weight gain than broilers fed CON diet. Overall, body weight gain in SE10 and SE15 was greater (P<0.05) than that in CON. Apparent total tract nutrient digestibility and blood characteristics did not differ (P>0.05) among treatments. The water holding capacity was increased (P<0.05) in SE15 compared with CON. Other meat quality in terms of pH value, breast muscle color ($L^*$, $a^*$, $b^*$) and drip loss were unaffected by dietary supplementation with bacteriophage SE. The visceral weight of bursa of Fabricius was increased (P<0.05) in broilers fed the bacteriophage SE incorporated diets compared with those fed the CON diet. No difference (P>0.05) was observed in visceral weight of liver, spleen, breast muscle, abdominal fat, gizzard and excreta concentrations of Lactobacillus, Clostridium perfringens, Escherichia coli, and Salmonella. In conclusion, dietary supplementation with 0.10 and 0.15% bacteriophage SE could improve the growth performance, breast muscle water holding capacity and bursa of Fabricius visceral weight in broilers.