• Title/Summary/Keyword: Rosmarinic acid

Search Result 103, Processing Time 0.028 seconds

Effects of Carnosic Acid on Muscle Growth in Zebrafish (Danio rerio) (제브라피쉬 근육성장에서의 carnosic acid의 효과)

  • Kim, Jeong Hwan;Jin, Deuk-Hee;Kim, Young-Dae;Jin, Hyung-Joo
    • Korean Journal of Ichthyology
    • /
    • v.26 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • Myogenesis is the formation process of multinucleated myofiber with a contractile capacity from muscle satellite cell (MSCs) during life. This process is tightly controlled by several transcription factors such as Pax3 and Pax7 (paired box protein 3 and 7), MEF2C (myocyte enhancer factor 2) and MRFs (myogenic regulatory factors) etc. On the contrary, myostatin (MSTN) is a transforming growth factor-${\beta}$ superfamily, which functions as a negative regulator of skeletal muscle development and growth. Carnosic acid (CA) is a major phenolic component in rosemary (Rosmarinus officinalis) and have been reported various biological activities such as anticancer, antioxidant, antimicrobial and therapeutic agents for amnesia, dementia, alzheimer's disease. This study was confirmed to effects of CA on muscle cell line and muscle tissue alteration of zebrafish by intramuscular injection or feeding methods. $10{\mu}M$ CA showed a non-cytotoxic on myoblast and a complete inhibition effect against myostatin activity on luciferase assay. In intramuscular injection experiment, the total protein and triglyceride amount of $10{\mu}M/kg$ of CA injected group increased by 11% and decreased by 13% compared to these of the no injected group. In histology analysis of muscle tissues by hematoxylin/eosin staining, the number of muscle fiber of $10{\mu}M/kg$ of CA injected group decreased by 29% and fiber area increased 40% compared to these of no injected group. In feeding experiment, the total protein and triglyceride amount no significance difference compared to these of the normal feeding group. In histology analysis, the number of muscle fiber of 1% CA fed group decreased by 35% and fiber area increased 56% compared to these of normal fed group. We identified that CA have an effect on hypertrophy of muscle fiber in adult zebrafish and the results of this study are considered as the basic data that can reveal the mechanisms of muscle formation via gene and protein level analysis.

Inhibitory Effects on Oral Microbial Activity and Production of Lipopolysaccharides-Induced Pro-Inflammatory Mediators in Raw264.7 Macrophages of Ethanol Extract of Perilla flutescens (L.) Britton

  • Jeong, Moon-Jin;Lim, Do-Seon;Lee, Myoung-Hwa;Heo, Kyungwon;Kim, Han-Hong;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.213-220
    • /
    • 2020
  • Background: The leaves of Perilla frutescens, commonly called perilla and used for food in Korea, contain components with a variety of biological effects and potential therapeutic applications. The purpose of this study was to identify the components of 70% ethanol extracted Perilla frutescens (EEPF) and determine its inhibitory effects on oral microbial activity and production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharides (LPS)-stimulated Raw264.7 macrophages, consequently, to confirm the possibility of using EEPF as a functional component for improving the oral environment and preventing inflammation. Methods: One kg of P. frutescens leaves was extracted with 70% ethanol and dried at -70℃. EEPF was analyzed using high-performance liquid chromatography analysis, and antimicrobial activity against oral microorganisms was revealed using the disk diffusion test. Cell viability was elucidated using a methylthiazolydiphenyl-tetrazolium bromide assay, and the effect of EEPF on LPS-induced morphological variation was confirmed through microscopic observation. The effect of EEPF on LPS-induced production of pro-inflammatory mediators, NO and PGE2 was confirmed by the NO assay and PGE2 enzyme-linked immunosorbent assay. Results: The main component of EEPF was rosemarinic acid, and EEPF showed weak anti-bacterial and anti-fungal effects against microorganisms living in the oral cavity. EEPF did not show toxicity to Raw264.7 macrophages and had inhibitory effects on the morphological variations and production of pro-inflammatory mediators, NO and PGE2 in LPS-stimulated Raw264.7 macrophages. Conclusion: EEPF can be used as a functional material for improving the oral environment through the control of oral microorganisms and for modulating inflammation by inhibiting the production of inflammatory mediators.

Chemical Composition and Quorum Sensing Inhibitory Effect of Nepeta curviflora Methanolic Extract against ESBL Pseudomonas aeruginosa

  • Haitham Qaralleh
    • Journal of Pharmacopuncture
    • /
    • v.26 no.4
    • /
    • pp.307-318
    • /
    • 2023
  • Objectives: Bacterial biofilm is regarded as a significant threat to the production of safe food and the arise of antibiotic-resistant bacteria. The objective of this investigation is to evaluate the quorum sensing inhibitory effect of Nepeta curviflora methanolic extract. Methods: The effectiveness of the leaves at sub-inhibitory concentrations of 2.5, 1.25, and 0.6 mg/mL on the virulence factors and biofilm formation of P. aeruginosa was evaluated. The effect of N. curviflora methanolic extract on the virulence factors of P. aeruginosa, including pyocyanin, rhamnolipid, protease, and chitinase, was evaluated. Other tests including the crystal violet assay, scanning electron microscopy (SEM), swarming motility, aggregation ability, hydrophobicity and exopolysaccharide production were conducted to assess the effect of the extract on the formation of biofilm. Insight into the mode of antiquorum sensing action was evaluated by examining the effect of the extract on the activity of N-Acyl homoserine lactone (AHL) and the expression of pslA and pelA genes. Results: The results showed a significant attenuation in the production of pyocyanin and rhamnolipid and in the activities of protease and chitinase enzymes at 2.5 and 1.25 mg/mL. In addition, N. curviflora methanolic extract significantly inhibited the formation of P. aeruginosa biofilm by decreasing aggregation, hydrophobicity, and swarming motility as well as the production of exopolysaccharide (EPS). A significant reduction in AHL secretion and pslA gene expression was observed, indicating that the extract inhibited quorum sensing by disrupting the quorum-sensing systems. The quorum-sensing inhibitory effect of N. curviflora extract appears to be attributed to the presence of kaempferol, quercetin, salicylic acid, rutin, and rosmarinic acid, as indicated by LCMS analysis. Conclusion: The results of the present study provide insight into the potential of developing anti-quorum sensing agents using the extract and the identified compounds to treat infections resulting from quorum sensing-mediated bacterial pathogenesis.

Cellular Protective Effect and Active Component Analysis of Lavender (Lavandula angustifolia) Extracts and Fractions (라벤더(Lavandula angustifolia) 추출물 및 분획물의 세포보호효과와 활성 성분 분석)

  • Kim, A Young;Ha, Ji Hoon;Kim, A Rang;Jeong, Hyo Jin;Kim, Kyoung Mi;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.479-484
    • /
    • 2017
  • In this study, antioxidative activities and cellular protective effects of 70% ethanol extracts and fractions from lavender were evaluated. The scavenging activity ($FSC_{50}$) of free radical (1,1-phenyl-2-picrylhydrazyl, DPPH) was 46.6, 45.5 and $477.5{\mu}g/mL$ in the 70% ethanol extract, ethyl acetate fraction and aglycone fraction, respectively. The reactive oxygen species scavenging activities (${OSC_{50}$) of 70% ethanol extract, ethyl acetate fraction and aglycone fraction were 8.1, 3.3 and $17.6{\mu}g/mL$, respectively, and they showed lower antioxidative activity than that of using L-ascorbic acid ($1.5{\mu}g/mL$). However, the aglycone fraction showed higher photohemolysis protective effect than that of using the 70% ethanol extract and ethyl acetate fraction. At $50{\mu}M$ concentration, the cellular protective effect (${\tau}_{50}$) of 70% ethanol extract, ethyl acetate fraction and aglycone fraction from lavender was 70.6, 87.2 and 165.2 min, respectively. In particular, the lavender aglycone fraction showed 3.8 times higher cellular protective effect than that of (+)-${\alpha}$-tocopherol. The lavender fractional components including luteolin 7-O-glucuronide, vitextin, rosmarinic acid, luteolin, and apigenin were identified using TLC and LC-MS. However, the lavender aglycone fraction did not show any significant increase in flavonoids (luteolin and apigenin) compared to that of the ethyl acetate fraction. In conclusion, it is suggested that lavender may be applied as an antioxidant material in cosmetic industries.

Antimicrobial and Antioxidant Activities of Perilla frutescens var. acuta Extract and Its Fraction and Their Component Analyses (자소엽 추출물의 항균 및 항산화 효과와 성분분석)

  • Jeong, Hyo Jin;Xuan, Song Hua;Song, Ba Reum;Lee, Sang Lae;Lee, Yun Ju;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.716-725
    • /
    • 2018
  • In this study, antimicrobial and antioxidative activities of Perilla frutescens var. acuta were investigated with 50% ethanol and the ethyl acetate fraction and also the components were analyzed. The minimum inhibitory concentration (MIC) of the ethyl acetate fraction for both Staphylococcus aureus and Pseudomonas aeruginosa were $78{\mu}g/mL$, indicating high antimicrobial effects. The free radical scavenging activity ($FSC_{50}$) and the reactive oxygen species (ROS) scavenging activity ($OSC_{50}$) in $Fe^{3+}-EDTA/H_2O_2$ system values of the ethyl acetate fraction were $25.90{\mu}g/mL$ and $1.40{\mu}g/mL$, respectively. After the cell damage induced by $400mJ/cm^2$ UVB irradiation, the cytoprotective effect of the ethyl acetate fraction of P. frutescens var. acuta showed the concentration dependent manner ranging from 2.0 to $16.0{\mu}g/mL$. The intracellular ROS inhibitory activity in HaCaT cells decreased to 28.6% and 40.7% for the 50% ethanol extract and ethyl acetate fraction, respectively at the concentration of $32{\mu}g/mL$. Components of rosmarinic acid, luteolin, apigenin, caffeic acid and ethyl caffeate were identified in the ethyl acetate fraction. These results suggest that the extract and fraction of P. frutescens var. acuta may be applied to the field of cosmetics as a natural material that protects the skin from an external environment by having antimicrobial and antioxidative activities.

Agricultural and Quality Characteristics in Recombinant Inbred Lines (RILs) Population in Perilla (Perilla frutescens) (들깨 대실/잎들깨1호 재조합 자식계통(RILs)의 농업적 특성 및 품질 분석)

  • Park, Jae Eun;Lee, Myoung Hee;Oh, Ki Won;Kim, Sungup;Oh, Eunyoung;Ha, Tae Joung;Cho, Kwang-Soo;Jung, Chan Sik;Kim, Jung In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.3
    • /
    • pp.248-255
    • /
    • 2021
  • This study was conducted to obtain basal information for the development of perilla cultivars with improved quality. The F7 population of recombinant inbred lines (RILs) from a cross between the parents of Daesil for seeds and Ipdeulkkae1 for vegetables was used as the material. We evaluated several agricultural characteristics and seed quality. Variations were observed in most of the measurements; for example, stem length (ranging from 66.0 to 150.0 cm), number of branches (from 5 to 23), flower cluster length (ranging from 5.1 to 10.5 cm), number of flower clusters (from 17 to 131), a-linolenic acid content (from 54.2 to 64.1%), and functional compound content (rosmarinic acid 869.5~3,508.1 ㎍/g; luteolin 47.4~864.3 ㎍/g; apigenin 57.1~296.7 ㎍/g) all showed variation. Significant correlations between stem length and the number of branches (0.561) and number of branches versus number of flower clusters (0.638) were detected in the RIL F7 population. Most agricultural characteristics and seed qualities showed a normal distribution with large variation, and transgressive segregation was observed in many descendants with characteristics to those of their parents. Daesil/Ipdeulkkae1 RIL F7 populations could be useful for future QTL analysis as well as for intermediate breeding lines for high-quality perilla cultivars.

Pull-out bond strength of a self-adhesive resin cement to NaOCl-treated root dentin: effect of antioxidizing agents

  • Khoroushi, Maryam;Kachuei, Marzieh
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2014
  • Objectives: This study evaluated the effect of three antioxidizing agents on pullout bond strengths of dentin treated with sodium hypochlorite. Materials and Methods: Root canals of 75 single-rooted human teeth were prepared. Fifteen teeth were irrigated with normal saline for a negative control group, and the remaining 60 teeth (groups 2 - 5) with 2.5% NaOCl. The teeth in group 2 served as a positive control. Prior to post cementation, the root canals in groups 3 - 5 were irrigated with three antioxidizing agents including 10% rosmarinic acid (RA, Baridge essence), 10% hesperidin (HPN, Sigma), and 10% sodium ascorbate hydrogel (SA, AppliChem). Seventy-five spreaders (#55, taper .02, Produits Dentaires S.A) were coated with silica and silanized with the Rocatec system and ceramic bond. All the prepared spreaders were cemented with a self-adhesive resin cement (Bifix SE, Voco Gmbh) in the prepared canals. After storage in distilled water (24 h/$37^{\circ}C$), the spreaders were pulled out in a universal testing machine at a crosshead speed of 1.0 mm/min. Pull-out strength values were analyzed by one-way ANOVA and Tukey's HSD test (${\alpha}$ = 0.05). Results: There were significant differences between study groups (p = 0.016). The highest pullout strength was related to the SA group. The lowest strength was obtained in the positive control group. Conclusions: Irrigation with NaOCl during canal preparation decreased bond strength of resin cement to root dentin. Amongst the antioxidants tested, SA had superior results in reversing the diminishing effect of NaOCl irrigation on the bond strength to root dentin.

Secondary Metabolites with Anti-complementary Activity from the Stem Barks of Juglans mandshurica Maxim

  • Li, Zi-Jiang;Chen, Shilin;Yang, Xiang-Hao;Wang, Rui;Min, Hee-Jeong;Wu, Lei;Si, Chuan-Ling;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.118-124
    • /
    • 2018
  • Juglans mandshurica is a fast growing hard species, which is a tree in family of Juglandaceae and has a wide distribution in China, Korea and eastern Russia. Plant materials from J. mandshurica have extensively been used in folk medicines to prevent or cure gastric, esophageal, lung and cardiac cancer. As one chain of our searching for anticomplementary agents from natural sources, two epimeric ellagitannins, [2,3-O-4,4',5,5',6,6',-hexahydroxydiphenoyl (HHDP))-(${\alpha},{\beta}$)-D-glucose] (I) and pedunculagin (II) were purified from 70% acetone extracts of the stem barks of J. mandshurica by Thin Layer Chromatography and Sephadex LH-20 column chromatography approaches. The chemical structures of the isolated compounds were characterized by MS, NMR, and a careful comparation with published literatures. The epimeric ellagitannins I and II exhibited inhibitory properties against a classical pathway of complementary system with 50 % inhibitory concentrations ($IC_{50}$) values of 65.3 and $47.7{\mu}M$, respectively, comparing with riliroside ($IC_{50}=104{\mu}M$) and rosmarinic acid ($IC_{50}=182{\mu}M$), which were used as positive controls. Thus, the work indicated both the two secondary metabolites possess excellent inhibitory activity and might be developed as potential anticomplementary chemicals.

Effect of antioxidants on push-out bond strength of hydrogen peroxide treated glass fiber posts bonded with two types of resin cement

  • Khoroushi, Maryam;Mazaheri, Hamid;Tarighi, Pardis;Samimi, Pouran;Khalighinejad, Navid
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.303-309
    • /
    • 2014
  • Objectives: Hydrogen peroxide ($H_2O_2$) surface treatment of fiber posts has been reported to increase bond strength of fiber posts to resin cements. However, residual oxygen radicals might jeopardize the bonding procedure. This study examined the effect of three antioxidant agents on the bond strength of fiber posts to conventional and self-adhesive resin cements. Materials and Methods: Post spaces were prepared in forty human maxillary second premolars. Posts were divided into five groups of 8 each: G1 (control), no pre-treatment; G2, 10% $H_2O_2$ pre-treatment; G3, G4 and G5. After $H_2O_2$ application, Hesperidin (HES), Sodium Ascorbate (SA) or Rosmarinic acid (RA) was applied on each group respectively. In each group four posts were cemented with Duo-Link conventional resin cement and the others with self-adhesive BisCem cement. Push-out test was performed and data were analyzed using 2-way ANOVA and tukey's post-hoc test (${\alpha}=0.05$). Results: There was a statistically significant interaction between the cement type and post surface treatment on push-out bond strength of fiber posts (p < 0.001, F = 16). Also it was shown that different posts' surface treatments significantly affect the push-out bond strength of fiber posts (p = 0.001). $H_2O_2$ treated posts (G2) and control posts (G1) cemented with Duo-link showed the highest ($15.96{\pm}5.07MPa$) and lowest bond strengths ($6.79{\pm}3.94$) respectively. Conclusions: It was concluded that $H_2O_2$ surface treatment might enhance the bond strength of fiber posts cemented with conventional resin cements. The effect of antioxidants as post's surface treatment agents depends on the characteristics of resin cements used for bonding procedure.

Antiamoebic activities of flavonoids against pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba species

  • Huong Giang Le;Tuan Cuong Vo;Jung-Mi Kang;Thu Hang Nguyen;Buyng-Su Hwang;Young-Taek Oh;Byoung-Kuk Na
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.449-454
    • /
    • 2023
  • Free-living amoebae (FLA) rarely cause human infections but can invoke fatal infections in the central nervous system (CNS). No consensus treatment has been established for FLA infections of the CNS, emphasizing the urgent need to discover or develop safe and effective drugs. Flavonoids, natural compounds from plants and plant-derived products, are known to have antiprotozoan activities against several pathogenic protozoa parasites. The anti-FLA activity of flavonoids has also been proposed, while their antiamoebic activity for FLA needs to be emperically determined. We herein evaluated the antiamoebic activities of 18 flavonoids against Naegleria fowleri and Acanthamoeba species which included A. castellanii and A. polyphaga. These flavonoids showed different profiles of antiamoebic activity against N. fowleri and Acanthamoeba species. Demethoxycurcumin, kaempferol, resveratrol, and silybin (A+B) showed in vitro antiamoebic activity against both N. fowleri and Acanthamoeba species. Apigenin, costunolide, (-)-epicatechin, (-)-epigallocatechin, rosmarinic acid, and (-)-trans-caryophyllene showed selective antiamoebic activity for Acanthamoeba species. Luteolin was more effective for N. fowleri. However, afzelin, berberine, (±)-catechin, chelerythrine, genistein, (+)-pinostrobin, and quercetin did not exhibit antiamoebic activity against the amoeba species. They neither showed selective antiamoebic activity with significant cytotoxicity to C6 glial cells. Our results provide a basis for the anti-FLA activity of flavonoids, which can be applied to develope alternative or supplemental therapeutic agents for FLA infections of the CNS.