• 제목/요약/키워드: Root uptake

검색결과 348건 처리시간 0.029초

Proteome analysis of roots of sorghum under copper stress

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Lee, Dong-Gi;Sarker, Kabita;Lee, Moon-Soon;Xin, Zhanguo;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.130-130
    • /
    • 2017
  • Sorghum bicolor is considered as copper-tolerant species. The present study was conducted to understand the copper tolerance mechanism in Sorghum seedling roots. Morphological and effects of Cu on other interacting ions were observed prominently in the roots when the plants were subjected to different concentrations (0, 50, and $100{\mu}M$) of $CuSO_4$. However, the morphological characteristics were reduced by Cu stress, and the most significant growth inhibition was observed in plants treated with the highest concentration of $Cu^{2+}$ ions ($100{\mu}M$). In the proteome analysis, high-throughput two-dimensional polyacrylamide gel electrophoresis coupled with MALDI-TOF-TOF mass spectrometry was performed to explore the molecular responses of Cu-induced sorghum seedling roots. In two-dimensional silver-stained gels, a total of 422 differentially expressed proteins (${\geq}1.5-fold$) were identified using Progenesis SameSpot software. A total of 21 protein spots (${\geq}1.5-fold$) from Cu-induced sorghum roots were analyzed by mass spectrometry. Of the 21 differentially expressed protein spots from Cu-induced sorghum roots, a total of 10 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of the most identified protein species from the roots that function in stress response and metabolism was significantly enhanced, while protein species involved in transcription and regulation were severely reduced. The results obtained from the present study may provide insights into the tolerance mechanism of seedling roots in Sorghum.

  • PDF

도라지 종자 추출물의 처리가 제2형 당뇨 db/db 마우스의 혈당개선에 미치는 효과 (Improvement of blood glucose control in type 2 diabetic db/db mice using Platycodon grandiflorum seed extract)

  • 김태영;김석중;임지영
    • 한국식품과학회지
    • /
    • 제52권1호
    • /
    • pp.81-88
    • /
    • 2020
  • PGSE의 혈당조절 효과를 평가하기 위하여 제2형 당뇨 동물모델을 이용하여 8주간의 동물실험을 진행한 결과, 고농도 PGSE(600 mg/kg)의 투여는 경구 포도당 내성 및 혈당 수준을 유의적으로 감소시켰으며(p<0.05), 당화혈색소도 유의적으로 낮은 수준을 유지시켰다(p<0.05). 또한, 혈청 인슐린과 렙틴 농도 역시 대조군과 비교하여 PGSE 고농도 처리군에서 유의적으로 감소하였다(p<0.05). PGSE 투여는 db/db 마우스의 골격근에서 인슐린 의존적 세포신호전달경로를 유의적으로 활성화시켰으며, AMPK 인산화를 촉진시키고, 골격근내 포도당 흡수를 위한 GLUT4의 세포막으로의 전이를 대조군 대비 약 1.7배 증가시켰다. 이러한 결과를 근거로 할 때 PGSE는 항 당뇨병 치료제로서의 잠재적 가능성을 가진 것으로 판단된다.

연쇄구균의 세포벽 단백질 추출물이 림프구 활성의 억제에 미치는 영향 (THE INHIBITORY EFFECT OF STREPTOCOCCAL CELL WALL EXTRACTS ON STIMULATION OF LYMPHOCYTES)

  • 상현숙;정희일;오세홍;임미경
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.275-288
    • /
    • 1995
  • The inhibitory effect of cell wall extracts of streptococci, have been investigated to know host-parasite relationship or pathogenesis of abscess formation. Streptococci isolated from the infected root canals were sonicated to get cell wall extracts which have been known as one of the factors of pyogenesis. Lymphocytes separated by density gradient were stimulated with phytohemagglutinin and exposed to cell wall extracts of Streptococcus sanguis, S. mitis, S. uberis, S. mutans (ATCC 10449), and S. faecalis (ATCC 19433). [$^3H$]-thymidine uptake of lymphocytes was analyzed with scintillation counter and lactate dehyrogenase (LD) activity was measured with autochemistry analyzer. S. faeealis had the strongest inhibitory effect. beginning at $100\;{\mu}g/ml$ concentration of sonic extracts. S. sanguis and S. mitis had inhibitory effect at $300\;{\mu}g/ml$, while S. uberis and S. mutans showed no inhibitory, effect on DNA syntheis even at $300\;{\mu}g/ml$. Each streptococci showed different inhibitory effect on the DNA synthesis of lymphocytes, which finding indicated wide spectrum of susceptibility of lymphocytes according to streptococcus spp. There were no significant difference of LD activities between control and each streptococcal extracts. Streptococcal sonic extracts did not affect the morphological findings or number of colonies activated lymphocytes. These finding suggested the inhibitory effect of sonic extract of streptococci to lymphocytes could be detected by DNA synthesis inhibition, not by cellular membrane damage.

  • PDF

Ingestion Dose Evaluation of Korean Based on Dynamic Model in a Severe Accident

  • Kwon, Dahye;Hwang, Won-Tae;Jae, Moosung
    • Journal of Radiation Protection and Research
    • /
    • 제43권2호
    • /
    • pp.50-58
    • /
    • 2018
  • Background: In terms of the Level 3 probabilistic safety assessment (Level 3 PSA), ingestion of food that had been exposed to radioactive materials is important to assess the intermediate- and long-term radiological dose. Because the ingestion dose is considerably dependent upon the agricultural and dietary characteristics of each country, the reliability of the assessment results may become diminished if the characteristics of a foreign country are considered. Thus, this study intends to evaluate and analyze the ingestion dose of Korean during a severe accident by completely considering the available agricultural and dietary characteristics in Korea. Materials and Methods: This study uses COMIDA2, which is a program based on dynamic food chain model. It sets the parameters that are appropriate to Korean characteristics so that we can evaluate the inherent ingestion dose of Korean. The results were analyzed by considering the accident date and food category with regard to the $^{137}Cs$. Results and Discussion: The dose and contribution of the food category depicted distinctive differences based on the accident date. Particularly, the ingestion dose during the first and second years depicted a considerable difference by the accident date. However, after the third year, the effect of foliar absorption was negligible and exhibited a similar tendency along with the order of root uptake rate based on the food category. Conclusion: In this study, the agricultural and dietary characteristics of Korea were analyzed and evaluated the ingestion dose of Korean during a severe accident using COMIDA2. By considering the inherent characteristics of Korean, it can be determined that the results of this study will significantly contribute to the reliability of the Level 3 PSA.

Heavy Metal Uptake by Balloon Flower Together with Investigating Soil Properties and Heavy Metal Concentrations in the Cultivated Soils

  • Bae, Jun-Sik;Seo, Byoung-Hwan;Lee, Sin-Woo;Kim, Won-Il;Kim, Kwon-Rae
    • 한국토양비료학회지
    • /
    • 제47권3호
    • /
    • pp.172-178
    • /
    • 2014
  • Soil properties and heavy metal (HM) concentrations in the field soils where balloon flowers (Platycodon grandiflorum, BF) were cultivated, were investigated together with HM (Cd, Cu, Pb, and Zn) accumulation by the BF roots. Basically, in most soils examined (51-97% among 65 samples), the chemical properties including soil pH, organic matter, available-P, and exchangeable cation contents appeared to be lower than the optimal ranges for balloon flower cultivation. There were no samples exceeding the standard limits for HM in soils. Instead, the total HM concentration levels in soils appeared to be maintained at around background levels for general soil in Korea. This implied that elevated HM accumulation in the soils caused by any possible input sources was unlikely. Even though the BF cultivated soils were not contaminated by HM, it was appeared that substantial amount of Cd was accumulated in BF roots with 1.5% and 35% roots samples exceeding the standard limits legislated for BF root ($0.81mg\;kg^{-1}DW$) and herbal plants ($0.3mg\;kg^{-1}DW$), respectively. This implied that the soil HM standard limits based on the total concentration does not reflect well the metal accumulation by plants and also it is likely that the Cd standard limits for BF and herbal plants is too restrict.

삼중수소 사고유출로 인한 농작물 오염 평가 모델 (Model for assessing the contamination of agricultural plants by accidentally released tritium)

  • 금동권;이한수;강희석;최용호;이창우
    • Journal of Radiation Protection and Research
    • /
    • 제30권1호
    • /
    • pp.45-54
    • /
    • 2005
  • 원자력시설로부터 삼중수소 사고 누출시 시설 주변 농작물의 삼중수소 오염 평가를 위한 동적격실모델 ECOREA-H3를 개발하였다. 모델의 격실은 크게 대기, 토양, 농작물로 구성되며 농작물은 엽채류 곡물류, 근군류의 3개 소그룹으로 분류하여 각각 독립적으로 모델링하였다. 벼에 대한 삼중수소 피폭실험 해석을 통해 모델의 예측 정확도가 조사되었다. 모델링 결과 추수시 벼이삭의 TFWT 농도는 입력데이터 중 공기의 절대습도, 뿌리흡수비 강우량에 OBT 농도는 공기의 절대습도, 이삭의 성장기간, 유기물의 수소함량의 영향을 상대적으로 크게 받는 것으로 나타났다. 벼이삭 OBT 농도에 대한 모델 계산과 실험 측정값은 잘 일치하였다.

The Effect of Soil Texture on Fruits and Growth Properties in Rabbiteye Blueberries

  • Kim, Hong-lim;Kwack, Yong-Bum;Lee, Mock-hee;Chae, Won-Byoung;Hur, Youn-Young;Kim, Jin-Gook
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.582-587
    • /
    • 2015
  • This study was conducted to compare the plant growth and fruit quality of blueberries grown in different soil textures of Korea, in order to utilize the results for stable production and soil improvement. Rabbiteye blueberry cultivars 'Tifblue' and 'Baldwin' were planted and grown for three years from 2013 in wagner pot (1 $2000a^{-1}$) in a greenhouse of Namhae Sub-station, Institute of Horticultural and Herbal Science. The plants were grown in four soil textures, sand, sandy loam, loam and silt loam, and nutrient uptake and growth characteristics of plants were investigated. Leaf nitrogen and phosphorus contents of two cultivars grown in different soil textures ranged between 8.6 to $10.5gkg^{-1}$, which was lower than appropriate level for rabbiteye blueberry. However, the contents of potassium, calcium and magnesium in leaves were appropriate levels as $2.29{\sim}3.62gkg^{-1}$, $4.46{\sim}5.46gkg^{-1}$ and $1.45{\sim}2.12gkg^{-1}$, respectively. Nitrogen and phosphate contents in leaves were higher in the two cultivars grown in silt loam soil. There was no significant difference in plant volume and root dry weight among four soil textures in two cultivars. However, dry weight of leaves and branches were highest in loam soil. Fruit production was highest in loam and silt loam soil in two cultivars, showing negative correlation with the amount of sand in soil. However, sugar and acidity showed no correlation with sand content in soil. These results show the limit to the blueberry growth in soil that has no nutrient holding capacity; however, most of Korean soils that have good nutrient holding capacity can produce competitive fruits if the drainage is improved.

Comparisons of Nutrient Concentration of Leaves, Roots, and Soils in Three Bamboo Stands

  • Baek, Gyeongwon;Yoon, Jun-Hyuck;Bae, Eun Ji;Lee, Jihyun;Kim, Choonsig
    • 한국산림과학회지
    • /
    • 제111권1호
    • /
    • pp.108-114
    • /
    • 2022
  • In bamboo, the nutrient status of tissues and associated soil is an important indicator of nutrient uptake by various bamboo species. In this study, the nutrient concentrations of leaves, roots, and mineral soil at 0-10 cm depths were examined in three bamboo stands [Phyllostachys bambusoides S ieb. et Zucc, Phyllostachys nigra var. henonis Stapf ex. Rendle, and Phyllostachys pubescens (Mazel) Ohwi] at a broad regional scale in southern Korea. In the three bamboo species, species-specific differences were observed in the carbon (C) and calcium (Ca) concentrations of leaves and in the nitrogen (N) and magnesium (Mg) concentrations of roots. Ca concentrations in leaves were significantly higher in P. bambusoides (11.94 g Ca kg-1) than in P. pubescens (7.83 g Ca kg-1), whereas potassium (K) concentrations were lowest in P. bambusoides among the three bamboo species. N concentrations in the roots were significantly lower in P. pubescens (5.23 g N kg-1) than in P. nigra var. henonis (7.72 g N kg-1). In contrast to bamboo tissues, soil nutrients, such as total N, organic C, exchangeable Ca2+, and Mg2+, did not differ significantly among the bamboo species. These results suggest that species-specific practices will be required for nutrient management of bamboo stands because nutrient concentrations vary considerably in the tissues of the three studied species.

Improvement of cadmium tolerance and accumulation of Phragmites spp. Tabarka by ethyl methane sulfonate mutagenesis

  • Kim, Young-Nam;Kim, Jiseong;Lee, Jeongeun;Kim, Sujung;Lee, Keum-Ah;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • 제47권4호
    • /
    • pp.324-329
    • /
    • 2020
  • Reed (Phragmites spp.) is a rhizomatous plant of the Poaceae family and is known as high tolerant plant to heavy metal contaminants. This plant is widely recognized as a Cd root-accumulator, but improved heavy metal tolerance and uptake capacity are still required for phytoremediation efficiency. To enhance capacity of hyperaccumulator plants, ethyl methane sulfonate (EMS) as chemical mutagen has been introduced and applied to remediation approaches. This study aimed to select EMS-mutagenized reeds representing high Cd resistance and large biomass and to investigate their ability of Cd accumulation. After 6 months cultivation of M2 mutant reeds under Cd stress conditions (up to 1,500 µM), we discovered seven mutant individuals that showed good performances like survivorship, vitality, and high accumulation of Cd, particularly in their roots. Compared to wild type (WT) reeds as control, on average, dry weight of mutant type (MT) reeds was larger by 2 and 1.5 times in roots and shoots, respectively. In addition, these mutant plants accumulated 6 times more Cd, mostly in the roots. In particular, MT8 reeds showed the greatest ability to accumulate Cd. These results suggest that EMS mutagenesis could generate hyperaccumulator plants with enhanced Cd tolerance and biomass, thereby contributing to improvement of phytoremediation efficiency in Cd-contaminated soil or wastewater. Further studies should focus on identifying Cd tolerance mechanisms of such EMS-mutagenized plants, developing techniques for its biomass production, and investigating the practical potential of the EMS mutants for phytoremediation.

Molecular Characterization of Silicon (Si) Transporter Genes, Insights into Si-acquisition Status, Plant Growth, Development, and Yield in Alfalfa

  • Md Atikur Rahman;Sang-Hoon Lee;Yowook Song;Hyung Soo Park;Jae Hoon Woo;Bo Ram Choi;Ki-Won Lee
    • 한국초지조사료학회지
    • /
    • 제43권3호
    • /
    • pp.168-176
    • /
    • 2023
  • Silicon (Si) has the potential to improve plant growth and stress tolerance. The study aimed to explore Si-involving plant responses and molecular characterization of different Si-responsive genes in alfalfa. In this study, the exogenous supplementation of Si enhanced plant growth, and biomass yield. Si-acquisition in alfalfa root and shoot was higher in Si-supplemented compared to silicon deficient (-Si) plants, implying Si-acquisition has beneficial on alfalfa plants. As a consequence, the quantum efficiency of photosystem II (Fv/Fm) was significantly increased in silicon-sufficient (+Si) plants. The quantitative gene expression analysis exhibited a significant upregulation of the Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes in alfalfa roots, while BOR1, BOR4, NIP2, and NIP3 showed no significant variation in their expression. The MEME results further noticed the association of four motifs related to the major intrinsic protein (MIP). The interaction analysis revealed that NIP5;1 and Lsi1 showed a shared gene network with NIP2, BOR1, and BOR4, and Lsi2, Lsi3 and NIP3-1, respectively. These results suggest that members of the major intrinsic proteins (MIPs) family especially Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes helped to pass water and other neutral solutes through the cell membrane and those played significant roles in Si uptake and transport in plants. Together, these insights might be useful for alfalfa breeding and genome editing approaches for alfalfa improvement.