• Title/Summary/Keyword: Root uptake

Search Result 348, Processing Time 0.026 seconds

The Effect of Ectomycorrhizae ans Nitrogen Levels on the Growth of Quercus serrata Seedlings (외생균근균(外生菌根菌)과 질소시비수준(窒素施肥水準)이 졸참나무 묘목생장(苗木生長)에 미치는 영향(影響))

  • Oh, Kwang In;Park, Moon Su
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.2
    • /
    • pp.160-167
    • /
    • 1989
  • This study was carried out to examine the mycorrhizal development, growth, and nutrient uptake of Quercus serrate seedlings while they were grown for 120 days in a pot medium with and without Pisolithus tinctorius, and also with applications of nitrogen levels. The results were summarized as follows : 1) Inoculated seedlings showed ectomycorrhizal formation of 61. 75%. 2) In the root development, the best nitrogen level was $300{\mu}g/ml$ for inoculated seedlings, and the number of short roots, the number of primary lateral roots and total length of lateral roots were 34.3, 30.7, and 17.2% greater, respectively, than noninoculated seedlings. 3) Growth of shoot, leaf area, total dry weight, and volume of inoculated seedlings were increased 26.9, 52.3, 31.7, and 85.7% greater respectively, than noninoculated seedlings. 4) Inoculated seedlings were more enhanced in the uptake of N, P, K, and Ca than noninoculated seedlings, and the enhanced uptake was best shown at $300{\mu}g$ N/ml treatment.

  • PDF

Studies on Nutrio-physiology of Low Productive Rice Plants (수도저위생산력(水稻低位生産力)의 원인구명(原因究明)에 관(關)한 영양생리적연구(營養生理的硏究))

  • Park, Jun-Kyu
    • Applied Biological Chemistry
    • /
    • v.17 no.1
    • /
    • pp.1-30
    • /
    • 1974
  • Present study was undertaken to elucidate the relationship between uptake of nutrients and photosynthetic activities, and the translocation of several mineral nutrients in rice plants which were grown under different cultural conditions, utilizing radioactive tracer technique. Particular emphasis was placed on the analysis of patterns of nutrient uptake, the relationship between nutritional conditions and yield components. For this, rice plants grown on either low or high yielding fields at different growth stage were subjected to this study. The results are summarized as follows; 1. Varietal difference was observed in the uptake of potassium and phosphorus. Kusabue and Jinheung had good capacity but Paldal had rather poor capacity for the uptake of the both nutrients. 2. For rice plants, a high positive correlation was found between the oxidation of alpha plaus-naphthylamine by root and uptake of phosphorus. 3. Carbon assimilation rate repended on rice varieties. It was high in Noindo, Gutaenajuok #3 Suweon #82 and Jinheung but low in Taegujo, Kwanok, Yugu #132 etc. 4. Heavy application of nitrogen increased carbon assimilation in rice plants but this also depressed translocation of certain carbohydrates to ears. 5. Carbon assimilation wan greatly hampered in rice plants deficient in magnesium, phosphorus or potassium. 6. Total dry matter after ear formation stage, was much higher in rice plants grown in high yielding fields than those grown in low yielding fields. 7. Leaf area index(LAI) reached maximum at heading stage and decreased thereafter in high yielding fields. But in low yielding fields, it reached maximum before heading and sharply decreased thereafter due to early senescence of lower leaves. 8. In general, light transmission ratio (LTR) of leaves was higher in the early growth stage and lower in later stages. Higher ratio of LTR to leaf area index, was found in the rice grown in high yielding fields than those in low yielding fields. 9. Net photosynthetic activity decreased with the increase in leaf area index but was higher in high yielding fields than in low yielding fields. 10. After the ear formation stage, nitrogen, potassium and silicon as weil as $K_2O/N$ in straw were higher in high yielding fields than those in low yielding fields. 11. Nitrogen, phosphorus, potassium and magnesium taken up by rice plants in low yielding fields before heading stage were readily translocated to ears than those in high yielding fields. This suggests greater redistribution of nutrients in straw occurs due to lower uptake, in later growth stages, by rice plants grown in low yielding fields and hence results in early senescence due to nutrient deprivation. 12. In the high yielding fields nitrogen uptake by rice was slow but continuous throughout the life of the plants resulting in a large uptake even after heading. But, in low yielding fields the uptake was fast before heading and slow after heading. 13. A high positive correlation was found between the contents of nitrogen and potassium in the straw at heading stage and grain yield. Positive correlation was also found to hold between the contents of potassium, silicon, $K_2O/N$, $SiO_2/N$ in the straw at harvesting stage, and grain yield. 14. Carbon assimilation was greately hampered in rice plants deficient in magensium, phosphorus or potassium. 15. Uptake of nitrogen, phosphorus, potassium, silicon and manganese by rice was considerably higher in high yielding fields and reached maximum at ear formation stage. 16. In rice, a high positive correlation was discovered between total uptake of nitrogen, phosphorus, potassium, calcium, magnesium, silicon, manganese at harvesting stage and grain yield. 17. In rice, a high positive correlation was found between the total uptake of nitrogen, phosphorus, potassium, calcium, magnesium, silicon at harvesting stage, and number of spikelets per $3.3\;m^2$. In addition, a correlation was found between the total uptake of nitrogen and potassium and number of panicles per hill.

  • PDF

Effects of Mn on the Growth and Nutrient Status of Pinus densiflora Seedlings in Nutrient Culture Solution (소나무 묘목의 생장 및 영양상태에 미치는 Mn의 영향)

  • 이충화;이승우;진현오;정진현;이천용
    • The Korean Journal of Ecology
    • /
    • v.25 no.5
    • /
    • pp.349-352
    • /
    • 2002
  • The effects of Mn on growth and nutrient status of Pinus densiflora seedlings grown in a nutrient culture solution were investigated. Mn concentrations was added as manganese chloride at 0, 30 and 60ppm to the nutrient culture solution. The 2-year-old seedlings were transplanted into the solution maintained at pH 4.0, and grown for 90 days in a greenhouse. The Mn treatment induced a significant reduction in the dry weight growth of the seedlings. The relative growth rate(RGR) and net assimilation rate(NAR) of the seedlings decreased with increasing Mn concentrations in the nutrient culture solutions. For the nutrient status of the seedlings, Ca and Mg content in trunk and root was least in 60ppm Mn treatment, and Mn content in needle was about 3 times more than in root. Also the net photosynthetic rate of the seedlings was significantly lower both in 30ppm and 60ppm Mn treatment compared to them in 0ppm. This result suggests that the reductions in the RGR and NAR of the seedlings may be resulted from the inhibition of net photosynthesis by the mixed effect of lower nutrient uptake of roots and excess accumulation of Mn in needle.

A Study on the Copper Tolerance of Herbaceous Plants (구리 내성 식물에 관한 연구)

  • Kim, Seong-Hyeon;Lee, In-Suk
    • The Korean Journal of Ecology
    • /
    • v.27 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • This research was investigated to prepare basic data in a study on the copper tolerance of herbaceous plants through the growth rate and the elimination rate dependent on Cu concentration of 6 species; Commelina communis, Medicago sativa, Echinochloa frumentancea, Zea mays, Helianthus annuus and Abutilon avicennae, We examined the germination rate, root and shoot growth of seedling and fresh biomass of 6 species (Commelina communis, Medicago sativa, Echinochloa frumentancea, Zea mays, Helianthus annuus and Abutilon avicennae) painted to Cu contaminated soil (50, 100, 200, 300-CuCl₂/㎏) and control for 14 days. The germination rate of H. annuus, E. frumentancea and C. communis were not affected by Cu concentration. However, root and shoot growth of H. annuus was about 7% of control and the biomass was 35% of control at 300 ㎎-CuCl₂/㎏. E. frumentancea and C. communis that showed good growth rate at higher Cu contaminated soil (>200 -CuCl₂/㎏), were the most tolerant plant to Cu concentration. Especially, E. frumentancea eliminated over 30% of Cu in soil and the amount of Cu uptake increased with increasing Cu concentration; 1,020㎎ Cu per 1 ㎏ of soil at 300 ㎎-CuCl₂/㎏. From these results, we concluded that E. frumentancea would be used for phytoremediation.

Effect of button mushroom compost on mobilization of heavy metals by sunflower

  • Kyeong, Ki-Cheon;Kim, Yong-Gyun;Lee, Chan-Jung;Lee, Byung-Eui;Lee, Heon-Hak;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.163-170
    • /
    • 2014
  • The potential ability of Button mushroom compost (BMC) to solubilize heavy metals was estimated with metal contaminated soils collected from abandoned mines of Boryeong area in South Korea. The bacterial strains in BMC were isolated for investigating the mobilization of metals in soil or plant by the strains and identified according to 16S rRNA gene sequence analysis. When metal solubilization potential of BMC was assessed in a batch experiment, the BMC was found to be capable of solubilizing metals in the presence of metals (Co, Pb and Zn) and the results showed that inoculation of BMC could increase the concentrations of water soluble Co, Pb and Cd by 35, 25 and 45% respectively, than those of non-inoculated soils. BMC-assisted growth promotion and metal uptake in sunflower (Helianthus annuus) was also evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to increase the growth of H. annuus by 27, 25 and 28% respectively in Co, Pb and Zn contaminated soils. Moreover, enhanced accumulation of Co, Pb and Zn in the shoot and root systems was observed in inoculated plants, where metal translocation from root to the above-ground tissues was also found to be enhanced by the BMC. The apparent results suggested that the BMC could effectively be employed in enhancing phytoextraction of Co, Pb and Zn from contaminated soils.

Investigation of soil factors on physiological disorder of vegetable crops in vinyl house -(I). Tomato, Chinese cabbage and summer radish (시설원예 작물의 생리장해 유발 토양요인구명 -I. 토마토, 배추, 무우)

  • Choi, Byung-Ju;Lee, Chong-Ho;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.128-134
    • /
    • 1990
  • Croping pattern, fertilizer application, Soil chemical characteristics, plant nutritional condition and growth status were investigated in three major vinyl house farms near Yesan. Croping pattern changed from tomato to pumpkin due to tomato diseases such as wilting and blossom-end rot. Wilting seemed to be closely related with high EC, nitrogen and root cyst nematodes. Calcium deficiency seemed to be due to high potassium, EC in soil and high uptake of iron. Chinese cabbages in summer showed poor growth (80% inhibition) due to high EC(1.8mmho/cm) and easily got wenny root disease that might due to high phosphorus (1055ppm) in soil. Summer radish showed poor growth (50% inhibition) due to high EC(1.6mmho/cm), K and Mg resulting in base imbalance. Farmers used 5 kinds of compound fertilizer as basal application and one without P for top dressing. Urea and KCL were used for top dressing. Heavy application of livestock manure and chemical fertilizer for every crop made eutrophic even in subsoil.

  • PDF

Rock Phosphate with Mycorrhizae as P Source for Tomato Plant in Volcanic Ash Soil (화산회토양에서 Arbuscular Mycorrhizae 에 의한 토마토의 인광석 이용)

  • Chung, Jong-Bae;Moon, Doo-Khil
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.287-291
    • /
    • 1999
  • In order to examine the possible use of rock phosphate as P source, tomato seedlings with or without inoculation of arbuscular mycorrhizal fungi were grown in the pots of sterile volcanic ash soil from Cheju island with two levels of phosphorus (100 and 200 mg/kg) supplied either as fused or as rock phosphate. After three months of culture, plant dry weight, P and other nutrient uptake, root colonization and spore density in the soil were determined. Treatments of rock phosphate of both levels resulted in the significantly depressed plant growth in comparison to the treatments of fused phosphate, likely due to lower P availability in soil with rock phosphate. Mycorrhizal fungi inoculation increased the dry weight of plant at 200 mg/kg level of both fused and rock phosphate. Root infection and sporoulation were reduced in rock phosphate treatments. Nitrogen, K, Ca and Mg contents in plants were not significantly different at all treatments. As a P source, rock phosphate in combination with mycorrhizae was not satisfactory for optimum plant growth at $100{\sim}200\;mg/kg$ levels in Cheju volcanic ash soil.

  • PDF

Characteristics of Transformed Panax ginseng C.A. Meyer Hairy Roots: Growth and Nutrient Profile

  • Jeong Gwi-Taek;Park Don-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.43-47
    • /
    • 2006
  • Ginseng (Panax ginseng CA. Meyer) hairy root cultures, which are established via the infection of ginseng root discs with Rhizobium rhizogenes, have been used to construct profiles of both biomass growth and nutrient consumption in flask cultures. In a 250 mL shake flask culture, the maximum biomass was observed on the 59th day of the culture period, at 216.8 g (fresh wt) per liter or 11.4 g (dry wt) per liter. The hairy roots were determined to have a growth rate of 0.355 g-DW/g cells/day during the exponential growth phase and a maximum specific growth rate on day 7. Total ginseng saponin and phenolic compound contents were noted to have increased within the latter portion of the culture period. Linear correlations between increases in biomass weight and nutrient uptake were used to imply the conductivity yield $2.60g-DW/(L{\cdot}mS)$ and carbon yield 0.45 g-DW/(g sugar) in the 250 mL flask cultures. The biomass yield when two different nitrogen sources were used (ammonia and nitrate) was shown to remain approximately constant. at $0.47g-DW/(L{\cdot}mM\;NH_4$) and $0.33g-DW/(L{\cdot}mM\;NO_3$); it remained at these levels for 16 days with the ammonia. and for 24 days with the nitrate. The biomass yield when a phosphate source was used was also shown to remain approximately constant for 9 days, at $3.17g-DW/(L{\cdot}mM\;PO_4$), with an $R^2$ of 0.99.

Optimum germination temperature and seedling root growth characteristics of Camelina (카멜리나 (Camelina sativa Crtz.) 발아 적온 및 발아초기 뿌리생육 특성)

  • Park, Joon Sung;Choi, Young In;Kim, Augustine Yonghwi;Lee, Sang Hyub;Kim, Kyung-Nam;Suh, Mi Chung;Kim, Gi-Jun;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • A genus Camelina has been attracted as a promising oil crop, especially available in drought and marginal conditions. Due to more demands on arable land for bioenergy crops, price of agricultural products has been a challengeable issue. In that respect, development of Camelina crop with higher germination rate and germination energy can be a strategy to secure seedling establishment, nutrient uptake and long vegetative period. In order to be easily available in the field and laboratory conditions, Camelina seed needs to be optimized for its germination temperature. Germination temperature regime was in a range of 8 to $32^{\circ}C$ initially, and consecutively narrowed down to 8 to $20^{\circ}C$. Based on the temperature range, Camelina germinated greater than 96% at $8-16^{\circ}C$ in two weeks after sowing, but germination rate started to decrease at the higher than $24^{\circ}C$ and was significantly low at higher than $32^{\circ}C$. In terms of rapid time to reach the maximum germination rate and greater germination energy, temperature ranged from 12 to $16^{\circ}C$ was found to be desirable for Camelina germination. Although germinationa rate was greater at $16^{\circ}C$, lower temperature close to $12^{\circ}C$ would be favored for the field conditions where greater root growth leading to healthier seedlings and better nutrient or water availability is considerably demanded.

Ethylenediamine as a Promising and Biodegradable Chelating Agent in Aluminum Phytoremediation (알루미늄 식물학적정화에 사용 가능하고 생분해 되는 킬레이트로 후보로서의 ethylenediamine)

  • Lee, Sang-Man
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1041-1046
    • /
    • 2010
  • Phytoextraction is a technique which uses plants to clean up metal-contaminated soils. Recently, various chelating agents were introduced into this technique to increase the bioavailability of metals in soils. Even though the technique is an economic and environment-friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. Therefore, this research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Alunimum (Al) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetraacetic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Al to analyze the effect on plant growth. His slightly diminished the inhibitory effect of Al on root growth of plants, whereas, Cys, citrate, malate, oxalate, and succinate did not show significant effects. Both EDTA and EDA strongly diminished the inhibitory effect of Al on root growth. The effect of EDA is correlated with decreased Al uptake into the plants. In conclusion, as a biodegradable chelating agent, EDA is a good candidate for highly Al-contaminated areas.