• Title/Summary/Keyword: Root tensile force

Search Result 16, Processing Time 0.024 seconds

The Effect of Pinus densiflora Root System on Stability of Damaged Slopes (소나무의 근계특성이 사면안정화에 미치는 영향)

  • Suh, Dong-Jun;Kim, Se-Geon;Kim, Dong-Geun
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.3
    • /
    • pp.193-202
    • /
    • 2010
  • To analyze the effects of tree roots on the stability of damage slope, distributional and physical properties of five-year Pinus densiflora roots were investigated. In the composition of roots, the proportion of main root to lateral root was 1 to 9 in slope condition. Root tensile force was increased in accordance with increased proportion to diameter of Pinus densiflora roots. However, tensile strength was decreased in proportion to diameter of roots. Root shear strength showed that soil containing Pinus densiflora roots was higher than that of non-treated soils. This result shows that Pinus densiflora roots significantly stabilize the surface-soil rather than sub-soil in damage slopes.

Analysis of Slope Stability Effect of Arbors' Roots - On Tensile Strength of the Roots - (교목류 뿌리의 비탈면 안정효과 분석 - 뿌리의 인장강도를 중심으로 -)

  • Oh, Jae-Heun;Hwang, Jin-Sung;Cha, Du-Song
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • To provide the basic information about slope stability analysis, tensile force and strength of tree roots like Pinus koraiensis, Larix leptolepis, Pinus densiflora, Quercus mongolica, and Alnus japonica were measured and analyzed. As a result, tensile force increases in forms of involution of root diameter. The mean tensile strength of roots like P. koraiensis, L. leptolepis, P. densiflora, A. japonica and Q. mongolica were calculated as $165.38kgf/cm^2$, $172.78kgf/cm^2$, $176.25kgf/cm^2$, $214.29kgf/cm^2$ and $224.19kgf/cm^2$ respectively. It was shown that tensile strength decreasing tendency as root diameter increases. Also, recalculated soil shear strength by tensile strength of the roots like P. koraiensis, L. leptolepis, P. densiflora, A. japonica and Q. mongolica were $0.099kgf/cm^2$, $0.104kgf/cm^2$, $0.106kgf/cm^2$, $0.129kgf/cm^2$ and $0.135kgf/cm^2$ respectively.

A FEM ANALYSIS FOR INITIAL STRESS ON THE UPPER GAMINE BY ORTHODONTIC FORCE OF INTRUSION ARCH WIRE ACTIVATION (Intrusion arch wire activation시 상악 견치에 가해진 초기응력의 유한요소법을 통한 고찰)

  • Kang, Jeong-Weon;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.391-398
    • /
    • 1998
  • The purpose of this study was to find the distribution and measurement of compressive and tensile stress when intrusi- on arch wire is forced engage with upper canine and to analysis stress at each section through FEM. And we compare compressive and tensile ratio at each section. The results were as follows. 1. At FA point and cemento-enamel junction of upper canine, compressive and tensile force ratio is about the same. 2. At apex, compressive force is the four times as tensile force. ; In intrusion, we show root resorption at apex. 3. At Cemento-enamel junction, the compressive and tensile force show the maximun value except FA Point.

  • PDF

Tensile Strength Changes of Pinus densiflora root in Fire Damaged Forest Area (산불피해지에 있어서 소나무 뿌리의 인장강도특성 변화)

  • Cha, Du Song;Oh, Jae-Heun;Lee, Jung Su
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.4
    • /
    • pp.392-397
    • /
    • 2008
  • To characterize the root strength changes of Pinus densiflora by elapsed years after forest fire, we measured and analyzed the tensile force and strength of the roots using the universal testing machine for 4 years. The deterioration rate of the root strength was higher in small diameter class than that in large diameter class. Especially, the deterioration was highest of the root strength at the second year in all surveyed diameter classes and the mean deterioration rate of the root strength was 61% by that time. The tensile strength based on the simulation by ordinary differential equations deteriorated more than 50% in all diameter classes within 2 years after forest fire.

Three dimensional photoelastic study on the initial stress distributions of alveolar bone when retracted by lingual K-loop archwire (Lingual K-loop archwire를 이용한 발치공간 폐쇄시 초기응력 분포에 대한 3차원 광탄성학적 연구)

  • Byun, Bo-Ram;Kim, Sik-Sung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.32 no.5 s.94
    • /
    • pp.343-353
    • /
    • 2002
  • This study was designed to investigate the stress distribution of alveolar bone in case of on masse retraction with lingual K-loop archwire using the 3-dimensional photoelastic stress analysis followed by stress freezing process. Lingual K-loop archwire which had loop in 15mm height was used and activated by retraction force of 350gm per each side. The results were as follows 1. Central incisor : As the closer side to crown, the larger tensile stress was distributed at both mesial and labial surfaces and the larger compressive stress was distributed at distal surface. As the closer side to root apex, the larger compressive stress was distributed at lingual surface. The compressive stress was distributed at root apex. 2. Lateral incisor : The tensile stress was distributed at the coronal side of mesial surface. The compressive stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at labial surface. The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of lingual surface. The compressive stress was distributed at root apex. 3. Canine The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of mesial surface. The tensile stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. The compressive stress was distributed at root apex. 4. Second premolar : The tensile stress was distributed at mesial surface. The compressive stress was distributed at coronal side and the tensile stress was distributed at apical side of distal surface. The compressive stress was distributed at coronal side of buccal surface. As the closer side to crown, the larger tensile stress was distributed at lingual surface. The compressive stress was distributed at root apex. 5. First molar . As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. No stress was distributed at buccal surface and palatal root apex. As the closer side to crown, the larger tensile stress was distributed at both lingual surfaces. The compressive stress was distributed a4 buccal root apexes. 6. Second molar The compressive stress was distributed at all root apexes. As the closer side to crown, the larger compressive stress was distributed at both mesial and lingual surfaces, and the larger tensile stress at both distal and buccal surfaces. Transverse bowing effect was observed in on-masse retraction with lingual K-loop archwire, however vertical towing effect was not. Rather, reverse vortical bowing effect was developed.

STRESS ANALYSIS OF ROOT AND SUPPORTING TISSUES BY VARIOUS POST CORE DESIGN (지대치 형태에 따른 Post core의 치근내부 및 지지조직의 응력분석)

  • Kim Jin;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.468-481
    • /
    • 1993
  • The Purpose of this study was to analyze the stresses and displacements of various post and core. The Finite element models of central incisors were divided into seven types according to the various amount of remaining tooth structures. $10kgf/mm^2$ force was applied respectively as follows : 1) Horizontal on the labial surface 2) $26^{\circ}$ diagonal direction on the lingual surface. Material property, geometry, and load condition of each model were inputted to the two dimensional ANSYS 4.4A finite element program : stresses and displacements were analyzed. Results were follows : 1. In the case of $130^{\circ}$ shoulder post and core, Maximum tensile and shear stresses were observed in the crown margin. 2. Maximum shear stress was about 29% reduced by contrabevel. 3. In the case of 1mm axial tooth structure, Maximum tensile stress observed in the dentin. 4. In the case of but joint of cervix, Maximum stress concentration was observed in the dentin by the inclined and horizontal force. 5. Horizontal force produced the extraordinary high stresses in dentin and supporting structures. 6. The amount of remaining tooth structure affected the level of stress significantly and it determined the location of stress concentration.

  • PDF

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

Effect of labiolingual inclination of a maxillary central incisor and surrounding alveolar bone loss on periodontal stress: A finite element analysis

  • Choi, Sung-Hwan;Kim, Young-Hoon;Lee, Kee-Joon;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.46 no.3
    • /
    • pp.155-162
    • /
    • 2016
  • Objective: The aim of this study was to investigate whether labial tooth inclination and alveolar bone loss affect the moment per unit of force ($M_t/F$) in controlled tipping and consequent stresses on the periodontal ligament (PDL). Methods: Three-dimensional models (n = 20) of maxillary central incisors were created with different labial inclinations ($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, and $20^{\circ}$) and different amounts of alveolar bone loss (0, 2, 4, and 6 mm). The $M_t/F$ necessary for controlled tipping ($M_t/F_{cont}$) and the principal stresses on the PDL were calculated for each model separately in a finite element analysis. Results: As labial inclination increased, $M_t/F_{cont}$ and the length of the moment arm decreased. In contrast, increased alveolar bone loss caused increases in $M_t/F_{cont}$ and the length of the moment arm. When $M_t/F$ was near $M_t/F_{cont}$, increases in Mt/F caused compressive stresses to move from a predominantly labial apical region to a palatal apical position, and tensile stresses in the labial area moved from a cervical position to a mid-root position. Although controlled tipping was applied to the incisors, increases in alveolar bone loss and labial tooth inclination caused increases in maximum compressive and tensile stresses at the root apices. Conclusions: Increases in alveolar bone loss and labial tooth inclination caused increases in stresses that might cause root resorption at the root apex, despite the application of controlled tipping to the incisors.

Effects by the Magnitude of Shear Load on the Formation and Propagation of Mode II Branch Cracks (전단하중의 크기가 모드 II 분기균열의 형성과 전파에 미치는 영향)

  • 이정무;송삼홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.487-490
    • /
    • 2004
  • In this paper, we investigated the characteristics of initiation and propagation behavior for fatigue crack observed by changing various shapes of initial crack and magnitudes of loading in modified compact tension shear(CTS) specimen subjected to shear loading. In the low-loading condition, the secondary fatigue crack was created in the notch root due to friction on the pre-crack face grew to a main crack. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Influenced by the shear loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. The propagation path of fatigue crack under the Mode II loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

The Characteristics of Fatigue Crack Propagation Behavior in Shear Load (전단하중 하의 피로균열 전파거동의 특징)

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.302-307
    • /
    • 2004
  • This paper reviewed characteristics of fatigue crack behavior observed by changing various shapes of initial crack and magnitudes of loading in compact tension shear(CTS) specimen subjected to shear loading. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Meanwhile, the secondary fatigue crack in the low-loading condition which was created in the notch root due to friction on the pre-crack face grew to a main crack. Influenced by the mode II loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. Propagation path of fatigue crack under the shear loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF