• Title/Summary/Keyword: Root shear stress

Search Result 27, Processing Time 0.021 seconds

Analyses of Shear Stress and Erosion Characteristic in a Vegetated Levee Revetment with Root Fiber Quantity (근모량에 따른 식생호안의 전단강도와 침식특성 분석)

  • Choi, Heung Sik;Lee, Woong Hee
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This study analyzed shear stress and erosion characteristic of a vegetated levee embankment with root fiber quantity, which is an important factor for evaluating the stability of it. The averaged root fiber quantity in a vegetated levee revetment was measured by the sampler manufactured by this research. The Phragmites Japonica Steud which is somewhat dominant species in a vegetated levee embankment was selected as an experimental vegetation. As a result of experiment of each flow regime, the shear stress was increased while root fiber quantity was increased and the erosion rate was exponentially decreased as the root fiber quantity was increased. The erosion rate was exponentially decreased as the shear stress was increased which is shown that the increase of shear stress by root fiber quantity results in the increase of erosion resistance in a vegetated soil. The relationship between shear stress and erosion rate with root fiber quantity were analyzed and their regression equations were suggested with high determination coefficients. The hydraulic stability is governed by the increase of shear stress by root fiber quantity and the Froude number of flow characteristic in a vegetated levee revetment.

A Study of Pull-out strength increasement by root of grasses (식물뿌리에 의한 인발력 증가에 관한 연구)

  • Kim, Taegyun;Chae, Soo Kwon;Chun, Seung Hoon;Jeong, Jae Cheol
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.199-210
    • /
    • 2012
  • In this study, a pull-out strength increasement of grasses was tested in field and the relationship between a weight of root and pull-out strength was established. The tested grasses were commmon reed, reed and sedge which were cultivated by mat-type like turf and used for revegetation of bank. The shear stress of soil at a section can be discribed as a function of root area and pull-out strength, therefore the result of this study will be used as a foundational data for reinforcing the shear stress of the revegetated bank. The heavier weight of root increased, the stronger shear stress was for all grasses. But the relationship between the weight and the shear stress were different by a kind of grass. The difference between common reed, sedge and reed is due to difference of growth and propagation. A reed propagates by subterranean stem and a root weight and pull-out strength are linearly increased by root and growth of subterranean stem.

A STUDY OF THE STRESS DISTRIBUTION ON THE SECOND ABUTMENT AND SUPPORTING TISSUES IN FIXED PARTIAL DENTURE USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS METHOD (고정성 가공의치에서 이차 지대치에 발생하는 응력의 삼차원 유한요소법적 분석)

  • Kim, Jeong-Hee;Jo, Kwang-Hun;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.675-694
    • /
    • 2000
  • The purpose of this study was to investigate the displacement of and the stress distribution on the prosthesis, abutment, and its supporting tissues under functional load, and the effect of alteration in root length of 2nd abutment. The 3-dimensional finite element method was used and the finite element models were prepared in which the abutments of left mandibular 5 unit axed partial denture were canine, the 1st pre-molar and the 2nd molar, and the root lengths of canines were as follows. Model I : Root length of canine was 2mm longer than the 1st premolar Model II : Root length of canine was 2mm shorter than the 1st premolar Static compressive force of 300N was applied to connector between 2nd premolar & 1st molar, and then von Mises stress, displacement and reaction force were obtained. The results were as follows : 1. In fixed partial denture, prosthesis under load on pontic was rotated around mesio-distal long axis of it from longual side to buccal, and simultaneously bended in buccal and gingival direction with mesial end deformed in gingival direction and distolingual end in occlusal. 2. Clinical crowns of abutments were bended in the same directions with those in which prosthesis deforms. Due to that, roots of anterior abutments were twisted in counterclockwise with concentration of shear stress on distal or distobuccal sides of their cervices, and that of posterior was in clockwise with concentration of shear stress on mesiobuccal side of it in the same level with anterior abutments. 3. In case that root length of the 2nd abutment was longer than that of the 1st abutment, its displacement and reaction force which means the force tooth exerts on the surrounding periodontal tissues were smaller but shear stress on itself was larger than in the case root length of 2nd abutment was shorter.

  • PDF

The Effect of Reinforcing Soil Shear Strength by a Root System Developed from Direct Sticking of Salix gracilistyla Miq (삽목에 의한 갯버들 근계의 토양전단강도 보강효과)

  • 이춘석;임승빈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.1-10
    • /
    • 2003
  • The purpose of this study was to verify the shore margin protection effect of a root system developed from direct sticking of Salix gracilistyla Miq., focusing on the reinforcement of soil shear strength. The materials were 20cm long sticks whose average diameter and weight were 7.52mm and 14.58g respectively, and sandy loam(Sand 60.36%, Silt 28%, Clay 11.64%), whose maximum dry weight(${\gamma}$$_{dmax}$) was 1.59gf/㎤ at the water ratio( $W_{opt}$) 13.8%. The direct shearing test(KS F 2343) was applied to cylindric columms(diameter 132mm) of pure soil and two years old root reinforced soil. At each condition of vertical stress, 10N/$ extrm{cm}^2$, 14.41N/$\textrm{cm}^2$ and 18.82 N/$\textrm{cm}^2$, five soil+root columns were sheared. After shear tests, the root area ratio and soil moisture on the shear plane were measured. The results of this research were as follows: 1. The average of root area ratio was 1.86% and the soil moisture 14.67%. 2. Two years old root system was found to increase the soil shear strength of pure soil in terms of Cohesion(C) and Inner friction Angle($\phi$) as follows. 3. The relationship between root area ratio and the increased shear strength can be presented with the following equation, $\Delta$S ≒ 0.33ㆍ TrㆍAs/A $\Delta$S : Increased Shear Strength Tr : Average Tension Strength of Root, Ar/A : Root Area Ratioioage Tension Strength of Root, Ar/A : Root Area Ratio

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO THE METHOD OF RESTORATION AFTER ROOT CANAL THERAPY (상악 중절치 근관치료후 수복 방법에 따른 응력 분포의 유한 요소 분석)

  • Lee, Jae-Young;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.549-567
    • /
    • 1994
  • Restoration of severly damaged teeth after endodontic treatment had been an interest to many dentists, and it is a fact that there have been lots of studies about it. In these days, although we have used Para-Post, pins, threaded steel post, cast gold post and core, and so on, as a method of restoration frequently, it has been in controversy with the influence of them on the teeth and surrounding periodontal tissue. In this study, we assume that the crown of the upper incisor have severly damaged, so, after the root canal therapy, 4 types of restoration had been carried out; 1) coronal-radicular amalgam restoration, 2) after setting up the Para-Post, restore with composite resin core only, 3) after setting up the Para-Post; restore with amalgam core, then cover with the PPM crown 4) after setting up the Para-Post, restore with composite core, then cover with the PPM crown. After restoration, in order to observe the concentration of stress at internal portion of the teeth and the sourrounding periodontal tissue, developing a 2-dimensional finite element model of labiopalatal section, then loading forces from 3 direction - direction of 45 degrees from lingual side near the incisal edge, horizontal direction from labial height of contour, vertical direction at the incisal edge-were applied. The analyzed results were as follows: 1. Stress of the normal central incisor was concentrated on the dentin aroundpulp chamber, labiocervical portion of a tooth and root apex, but with the alveolar bone, in the case of load from the direction of 45 degrees from lingual side near the incisal edge showed remarkable concentration of stress: 2. Coronal-radicular amalgam technique -showed less concentration of stress on the root and surrounding periodontal tissue than the restoration with the Para-Post. 3. The von Mises equivalent stress on the Para-Post showed maximum value at root-core junction rather than both ends and model with PPM restoration with amalgam core showed the least concentration of stress. Only the force from horizontal direction showed large shear stress on internal portion of the root, root apex and alveolar bone. 4. PPM crown with composite core rarely showed the concentration of stress on root and periodontal tissue. 5. As for alveolar bone, remarkable shear stress was concentrated on labial and palatal side by horizontal load.

  • PDF

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

The Effect of Pinus densiflora Root System on Stability of Damaged Slopes (소나무의 근계특성이 사면안정화에 미치는 영향)

  • Suh, Dong-Jun;Kim, Se-Geon;Kim, Dong-Geun
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.3
    • /
    • pp.193-202
    • /
    • 2010
  • To analyze the effects of tree roots on the stability of damage slope, distributional and physical properties of five-year Pinus densiflora roots were investigated. In the composition of roots, the proportion of main root to lateral root was 1 to 9 in slope condition. Root tensile force was increased in accordance with increased proportion to diameter of Pinus densiflora roots. However, tensile strength was decreased in proportion to diameter of roots. Root shear strength showed that soil containing Pinus densiflora roots was higher than that of non-treated soils. This result shows that Pinus densiflora roots significantly stabilize the surface-soil rather than sub-soil in damage slopes.

An Evaluation of Tree Roots Effect on Soil Reinforcement by Direct Shear Test (일면전단실험에 의한 수목뿌리의 토양보강효과 평가)

  • Cha, Du Song;Oh, Jae-Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.281-286
    • /
    • 2005
  • Trees enhance slope stability against down slope mass movement through the removal of soil water by transpiration and by the mechanical reinforcement of their roots. To assess the magnitude of this reinforcement on natural slope stability, direct shear tests were made on dry sand reinforced with different array types of roots. Pinus koraiensis was used as root specimens. The peak shear resistance at each normal stress level was measured on the rooted and unrooted soil specimens. Increased soil resistance(${\Delta}S$) by roots was calculated using parameters like internal friction angle and cohesion of tested soil and also evaluated the effects of root array in tested soil. As results, we find that shear resistance increased in tested soil shear box as diameters and arrayed numbers of root specimen increased and cross root array in tested soil had a much greater reinforcing effect than other root arrays. Comparison of traditional root-soil model with experiments showed that simulated reinforce strength by the model was different with those obtained by the experiment due to its linearity.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION IN ROOT-END RESECTED TEETH (유한요소법을 이용한 치근단절제술후 근첨의 응력분포에 관한 연구)

  • Lee, Se-Joon;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.163-174
    • /
    • 1998
  • The purpose of this study is to evaluate the distribution of stress in the root end resected teeth. The finite element method was used to compare stresses along the root and retrograde filling material in seven two-dimensional models of mandibular 2nd premolar. Each model was endodontic treatment and gold crown' restoration. Each model divided with amagam core restoration or gold casting post restoration. Thus each model divided with shape of root end resection, depth of retropreparation and exposure length of root in the bony cavity. The seven models were classified as in the table 1 below. A load of 500N was applied $45^{\circ}$ diagonally on the lingual slope of the buccal cusp. These mode were analyzed with two dimensional finite element methods. The results of this study were as follows : 1. The maximum tensile stress along the inner canal wall was shown on the model 7. 2. When the model 1 was compared with the model 5, the maximum tensile stress along the inner canal wall showed the model 1. 3. Less equivalent stress was shown on the model 6 and more equivalent stress was shown on the model 4. 4. More shear stress was shown on the retrograde filling material of the model 7. 5. The models with increased length of exposed root in the bony cavity demonstrated a gradual increase to the tensile stress in X direction which occurred approximately a boundary between the bone and exposed root in' the bony cavity. 6. The model which had a case of matching the apex of post and a boundary between the bone and exposed root in the bony cavity demonstrated more increase tensile stress in X direction than other models.

  • PDF

Stress Analysis of Fir-Tree Root in Turbine Rotor Using Photoelastic Technique (광탄성기법을 이용한 터빈로터 퍼-트리부의 응력해석)

  • Sin, Gwang-Bok;Gyeong, U-Min;Hong, Chang-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1784-1797
    • /
    • 1996
  • The disk/blade assembly of a turbine engine is made in the shape of a dovetail type or a fir-tree type. Since disk fillet regions or contact surfaces undergo high stress comcentration, fatigue cracks frequentrly occur in the disk/blade assembly. Therefore, it is necessary to analyze the stress distributions in the fir-tree type disk/balde assembly and predict the region of fatigue failure. The stress distributions of the disk/blade assembly were investigated by using the photoelastic method and the finite element method. Two dimensional photoelastic techniques were used to investigate the stress distributions of contact surfaces and fillet regions. TH stress distributions were obtained by the shear-difference method and were compared to the finite element results. It was found that maximum tensile stresses were higher in the fillet region thatn in the contact surfaces of the fir-tree models. The finite element results showed good agreement with the experimental results.