• 제목/요약/키워드: Root mean square of power

검색결과 248건 처리시간 0.024초

경험적 모드분해법을 이용한 시계열 모형의 예측력 개선에 관한 연구 (A Study on the Predictive Power Improvement of Time Series Model with Empirical Mode Decomposition Method)

  • 김태림;신홍준;남우성;허준행
    • 한국수자원학회논문집
    • /
    • 제48권12호
    • /
    • pp.981-993
    • /
    • 2015
  • 수문 시계열의 분석은 수문자료를 활용한 수자원의 효율적인 운영 및 관리에 필수적인 부분이며, 특히 장기적인 수문량 예측에 널리 활용되고 있다. 이러한 수문 시계열 분석은 전통적으로 하나의 자료계열을 하나의 요인으로 파악하여 자료를 분석하고 예측해왔지만 시계열 자료가 여러 가지 요인으로 혼합되 어 하나의 자료계열로 나타내질 수 있다는 가정 하에 각 요인들을 분해하여 분석하는 방법도 널리 연구되고 있다. 본 연구에서는 경험적 모드분해법을 이용하여 주어진 수문 시계열을 다중 성분으로 분해하고 분해된 각 요소를 시계열 모형으로 재구축한 후, 구축된 요소별 시계열 모형으로부터 예측된 값을 합하여 시계열을 예측하는 방법을 이용하였으며 이를 국내 댐 유입량에 적용한 후 그 결과를 나타내었다. 기존 시계열 모형과 경험적 모드분해법을 이용한 방법의 정확도를 비교한 결과, 기존의 시계열 모형을 이용하여 자료를 예측한 결과보다 경험적 모드분해법을 적용하여 자료를 분해한 후 시계열 자료를 예측한 결과가 주어진 시계열 자료를 더 잘 나타내는 것을 알 수 있었다.

위성영상을 이용한 고리원자력발전소 온배수 확산의 계절변동 (Seasonal Variation of Thermal Effluents Dispersion from Kori Nuclear Power Plant Derived from Satellite Data)

  • 안지숙;김상우;박명희;황재동;임진욱
    • 한국지리정보학회지
    • /
    • 제17권4호
    • /
    • pp.52-68
    • /
    • 2014
  • 지난 10년(2000-2010)간 촬영된 Landsat-7 ETM+ 영상을 이용하여 동해남부에 위치한 고리원자력발전소 주변해역의 해표면 온도와 온배수의 계절 변동을 조사하였다. 그리고 조류와 조석 자료를 분석하여 온배수의 확산범위를 살펴보았다. 먼저 Landsat-7 ETM+ DN값과 NOAA AVHRR 해표면 수온을 이용한 1차 선형회귀분석을 통해 산출된 해표면 수온을 관측 수온과 비교 검증하였다. 그 결과 결정계수는 약 0.97 이상으로 높게 나타났으며, 평균제곱근 오차는 약 $1.05{\sim}1.24^{\circ}C$로 나타났다. 선형회귀분석식을 통해 산출된 Landsat-7 영상의 해표면 수온은 겨울철 $12{\sim}13^{\circ}C$, 봄철에는 $13{\sim}19^{\circ}C$, 여름과 가을철에는 $24{\sim}29^{\circ}C$, $16{\sim}24^{\circ}C$의 분포를 나타내었다. 방류 초기 온배수와 주변 해역과의 해표면 온도 차는 여름철을 제외하고는 $6{\sim}8^{\circ}C$의 차이를 보였으며, 여름철 8월에는 최대 $2^{\circ}C$정도 차이를 나타내었다. 온배수의 확산범위는 해표면 수온 $1^{\circ}C$ 이상의 상승 범위는 동서로 최대 7.56km, 남북으로는 8.43km로 나타났다. 확산면적은 최대 $11.65km^2$로 나타났다. 본 연구의 결과는 원자력 발전소 주변지역의 해양환경 모니터링을 위한 기초 자료로 활용할 수 있을 것이다.

천리안 2A호와 히마와리 8호 기반 일사량 추정값과 종관기상관측망 일사량 관측값 간의 비교 (Comparison between Solar Radiation Estimates Based on GK-2A and Himawari 8 Satellite and Observed Solar Radiation at Synoptic Weather Stations)

  • 강대균;조영상;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제25권1호
    • /
    • pp.28-36
    • /
    • 2023
  • 일사량은 작물 생산성 평가를 위한 작물 생육 모델의 주요 입력 변수 중 하나로 사용되지만 관측이 어려워 다른 기상 변수들에 비해 관측값의 확보가 어렵다. 천리안 2A호와 히마와리 8호 위성 일사량 자료가 제공되기 시작하면서, 작물 생육과 태양광 발전을 결합한 영농형 태양광 시설 하에서의 작물 생산성 평가를 위한 일사량 자료를 확보하기 용이해졌다. 본 연구의 목적은 이들 인공위성 일사량 자료의 신뢰도를 비교하는 것이다. 이를 위해 2020년 5월부터 10월까지 인공위성 일사량 자료를 수집하여 일별 일사량의 평균 제곱근 편차(RMSE)와 정규 평균 제곱근 편차(NRMSE)를 계산하였다. 인공위성 일사량 자료가 작물 생육 모의 결과의 신뢰도에 미치는 영향을 파악하기 위해 연구기간 동안의 일사량 누적값을 비교하였다. 본 연구의 결과 히마와리 8호 일사량 자료가 천리안 2A호 일사량 자료보다 RMSE와 NRMSE가 작은 것으로 나타났다. 누적 일사량을 비교한 결과에서도 히마와리 8호 일사량 자료 누적값이 천리안 2A호 일사량 자료 누적값보다 오차가 작았다. 본 연구의 결과는 작물 생산성 평가에 히마와리 8호 일사량 자료를 사용하는 것이 천리안 2A호 일사량 자료를 사용하는 것보다 불확도를 줄일 수 있다는 것을 시사한다. 후속 연구에서 히마와리 8호 일사량 자료를 사용한 영농형 태양광 시설 하에서의 작물 생산성 및 태양광 발전량에 대한 분석이 이루어져야 할 것이다.

드러밍 운동이 과체중 여성의 자율신경계에 미치는 영향 (Effects of drumming exercise on the autonomic nervous system in overweight women)

  • 권정인;이재훈;조준용;오유성
    • 한국응용과학기술학회지
    • /
    • 제41권2호
    • /
    • pp.219-232
    • /
    • 2024
  • 이 연구는 성인 여성을 대상으로 체질량지수와 드러밍 운동이 자율신경계에 미치는 영향을 규명하는데 목적이 있다. 30-50대의 성인 여성10명을 체질량지수가 정상인 집단(Low BMI, LBMI <23kg/m2)과 과체중 이상인 집단(High BMI, HBMI>23kg/m2)으로 나누어 드러밍 운동을 실시하였다. 드러밍 운동은 1회 50분, 주 3회, 8주간 실시하였으며, 운동 전후 신체조성과 심박변이도를 측정하였다. 심박변이도는 선형분석인 시간 영역 분석과 주파수 영역 분석을 통해 SDNN(Standard Deviation of NN interval), RMSSD(Root Mean Square of the Successive Differences), HF(High Frequency), LF(Low Frequency), TP(Total Power)를 측정하였다. 비선형분석인 푸앵카레 플롯(Poincaré plot)을 통해 SD1(Standard Deviation of the distance of each point from the y = x axis), SD2(Standard Deviation of each point from the y = x + average R-R interval), SD2/SD1을 측정하였다. 자율신경계 지수로 부교감신경계지수(Parasympathetic Nervous System Index; PNS Index)와 교감신경계지수(Sympathetic Nervous System; SNS Index)를 측정하였다. 연구 결과, 운동 전 심박변이도에서 HBMI 집단과 LBMI 집단 간에는 유의한 차이가 나타나지 않았다. 그러나, 8주간의 드러밍 운동 후에는 HBMI 집단이 LBMI 집단에 비해 체중(p=0.034), 체질량지수(p=0.044), 체지방량(p=0.032), 허리둘레(p=0.013)에서 유의한 상호작용 효과가 나타났다. 심박변이도에서 HBMI 집단은 LBMI 집단에 비해 선형 분석에서 RMSSD(p=0.018)와 TP(p=0.033), 비선형분석에서는 SD1(p=0.018), 자율신경계지수에서는 PNS Index(p=0.040)가 유의하게 증가하였다. RMSSD, SD1 및 PNS Index는 부교감신경계의 활동을 나타내는 지표이다. 결론적으로 8주간의 드러밍 운동이 과체중 이상 여성의 자율신경계 중 부교감신경계의 개선에 긍정적인 효과를 미치는 것으로 확인되었다.

산림지역에서의 2023년 봄철 꽃나무 개화시기 예측 (Prediction of Spring Flowering Timing in Forested Area in 2023)

  • 서지희;김수경;김현석;천정화;원명수;장근창
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.427-435
    • /
    • 2023
  • 이상기상으로 인한 봄꽃 개화 시기의 변화는 식물의 생장기간 뿐 아니라 생물계절을 포함한 생태계의 모든 측면에 영향을 미친다. 따라서 봄꽃 개화 시기를 예측하는 것은 산림 생태계의 효과적인 관리에 필수적이다. 본 연구에서는 464곳의 산림에서 수집된 날씨정보를 기반으로 대한민국 산림의 대표적인 5가지 수종(미선나무, 아까시나무, 철쭉, 산철쭉, 마가목)의 2023년 개화 시기를 예측하기 위해 과정 기반 모형을 사용하였다. 이를 위해 28개 지역의 9년간(2009-2017) 개화 시기 자료를 활용하여 모형을 개발하였다. 개화 시기는 식물의 세 개 이상의 위치에서 처음으로 꽃이 피는 것을 기준으로 측정되었다. 본 연구에서는 STDD와 GDD 과정 기반 모형을 사용하여 개화 시기를 예측하였으며, 두 모형 모두 일반적으로 우수한 성능을 보였다. 과정 기반 모형의 주요 입력변수인 날씨 자료는 산악기상관측시스템과 기상청에서 제공하는 기온 정보를 융합하여 1km의 공간 해상도로 일 단위 기온 자료를 생성하였다. 지역별 보정 계수를 생산하고 적용하기 위해 랜덤포레스트 기계 학습을 활용하여 STDD와 GDD 모형을 기반으로 예측 정확도를 개선하였다. 결과적으로 보정 계수가 적용될 때 대부분의 수종에서 개화 시기의 예측 오차가 작았으며, 특히, 미선나무, 아까시나무, 철쭉에서 평균제곱근오차가 각각 1.2, 0.6, 1.2일로 매우 낮았다. 모형 성능을 평가하기 위해 10회의 무작위 샘플링 테스트를 실시하고, 최적의 결정계수 값을 가진 모형을 선택하여 모형의 성능을 평가하였다. 그 결과, 마가목을 제외한 모든 수종에서 보정 계수가 적용된 모형에서 결정계수가 최소 0.07에서 최대 0.7 증가하였으며 최종적으로 75%에서 90%의 설명력을 가졌다. 이를 기반으로 수종별 보정 계수를 산출하였으며, 1km 해상도의 전국 단위 개화시기예측 지도를 제작하였다. 본 연구는 식물의 계절 변화에 대한 자료로 활용될 것으로 예상되며, 수종 및 지역별로 개화 시기를 상세히 설명하여 기후 변화로 인한 계절 변화를 연구하는 데에 유용할 것으로 기대된다. 또한 우리나라 산림의 주요 수종에 대한 정확도 높은 개화 시기 예측 서비스는 산림 방문객들의 산림 경험 만족도를 크게 높일 수 있으며, 양봉업 등 임업 종사자들의 경제적 향상에 기여할 것으로 기대된다.

Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑 (Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network)

  • 공성현;백원경;정형섭
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1723-1735
    • /
    • 2022
  • 산사태는 가장 널리 퍼진 자연재해 중 하나로 인명 및 재산피해 뿐만 아니라 범 국가적 차원의 피해를 유발할 수 있기 때문에 효과적인 예측 및 예방이 필수적이다. 높은 정확도를 갖는 산사태 취약성도를 제작하려는 연구는 꾸준히 진행되고 있으며 다양한 모델이 산사태 취약성 분석에 적용되어 왔다. 빈도비 모델, logistic regression 모델, ensembles 모델, 인공신경망 등의 모델과 같이 픽셀기반 머신러닝 모델들이 주로 적용되어 왔고 최근 연구에서는 커널기반의 합성곱신경망 기법이 효과적이라는 사실과 함께 입력자료의 공간적 특성이 산사태 취약성 매핑의 정확도에 중요한 영향을 미친다는 사실이 알려졌다. 이러한 이유로 본 연구에서는 픽셀기반 deep neural network (DNN) 모델과 패치기반 convolutional neural network (CNN) 모델을 이용하여 산사태 취약성을 분석하는 것을 목적으로 한다. 연구지역은 산사태 발생 빈도가 높고 피해가 큰 인제, 강릉, 평창을 포함한 강원도 지역으로 설정하였고, 산사태 관련인자로는 경사도, 곡률, 하천강도지수, 지형습윤지수, 지형위치 지수, 임상경급, 임상영급, 암상, 토지이용, 유효토심, 토양모재, 선구조 밀도, 단층 밀도, 정규식생지수, 정규수분지수의 15개 데이터를 이용하였다. 데이터 전처리 과정을 통해 산사태관련인자를 공간데이터베이스로 구축하였으며 DNN, CNN 모델을 이용하여 산사태 취약성도를 작성하였다. 정량적인 지표를 통해 모델과 산사태 취약성도에 대한 검증을 진행하였으며 검증결과 패치기반의 CNN 모델에서 픽셀기반의 DNN 모델에 비해 3.4% 향상된 성능을 보였다. 본 연구의 결과는 산사태를 예측하는데 사용될 수 있고 토지 이용 정책 및 산사태 관리에 관한 정책 수립에 있어 기초자료 역할을 할 수 있을 것으로 기대된다.

위성 자료를 이용한 도시지역 극치강우 모니터링: 2011년 7월 집중호우를 중심으로 (Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011)

  • 윤선권;박경원;김종필;정일원
    • 한국수자원학회논문집
    • /
    • 제47권4호
    • /
    • pp.371-384
    • /
    • 2014
  • 본 논문에서는 천리안(Communication, Ocean and Meteorological Satellite; COMS)과 TRMM(Tropical Rainfall Measurement Mission)을 통하여 관측한 위성영상자료를 이용한 극치강우(Extreme Rainfall) 추정 알고리즘을 개발하였으며, 2011년 7월 집중호우를 대상으로 그 적용성을 평가하였다. TRMM/PR(TRMM/Precipitation Radar)과 AWS(Automatic Weather System) 자료를 이용하여 고도에 따른 멱급수 회귀방정식으로 Z-R관계식을 추정한 결과 $Z=303R^{0.72}$를 산출하였으며, 지상관측 자료와 비교한 결과 상관계수가 0.57로 분석되었다. 이 값과 TRMM/VIRS(TRMM/Visible Infrared Scanner)와의 관계를 이용하여 극치강우알고리즘을 개발하였으며, 천리안 위성에 적용하여 10분강 우를 추정한 결과 강우강도가 큰 경우에는 과소 추정하는 경향이, 작은 경우에는 과대 추정하는 경향이 있는 것으로 분석되었으나, 전반적인 패턴은 관측과 유사한 경향이 있는 것으로 분석되었다. 또한 이 알고리즘을 같은 센서를 이용하는 천리안 위성에 적용하여 AWS의 상관관계를 분석한 결과, 10분 강우량의 경우 상관계수는 0.517로 평균제곱근 오차는 3.146으로 분석되었고, 공간 상관행렬 오차의 평균은 -0.530~-0.228의 음의 상관을 보이는 것으로 분석되었다. 위성자료를 이용한 극치강우량 추정의 오차 발생 원인은 여러 가지 외부적인 요인으로 판단되며, 지속적인 알고리즘 개선 및 오차보정을 통한 정확도 개선이 필요한 것으로 사료된다. 본 연구의 결과는 추후 다양한 정지궤도위성의 이용을통 한 다중 원격탐사자료의 활용으로 보다 정확한 미계측 유역 수문자료 확충 및 실시간 홍수 예 경보 시스템 구축에 활용이 가능할 것으로 사료된다.

이어도 해양과학기지 풍속 자료의 실시간 운용을 위한 기준 고도 변환 과정 (Converting Ieodo Ocean Research Station Wind Speed Observations to Reference Height Data for Real-Time Operational Use)

  • 변도성;김효원;이주영;이은일;박경애;우혜진
    • 한국해양학회지:바다
    • /
    • 제23권4호
    • /
    • pp.153-178
    • /
    • 2018
  • 운용용으로 사용되는 대부분의 풍속자료는 10 m 기준 고도에서 측정 또는 생산된 자료이다. 이 연구는 이어도 해양과학기지 42.3 m 고도의 옥상 등대에서 측정 중인 풍속을 기준 고도의 풍속으로 변환시켜 국립해양조사원 누리집을 통해 실시간으로 제공하기 위한 사전 연구이다. 이를 위해 2015년에 이어도 기지에서 관측한 풍속을 대표적인 네 종류의 풍속 변환식 - 멱법칙식, 두 종류의 중립벽 로그법칙식(항력계수형, 거칠기 높이형), 대기 안정도 효과를 고려한 벽 로그법칙모델(안정도 고려 거칠기 높이형) -에 적용하였다. 관측 바람을 평가하는데 많이 사용되는 '안정도 고려 거칠기 높이형' 벽 로그법칙모델의 결과와 나머지 풍속 변환식 결과들을 서로 비교하였다. 그 결과 '거칠기 높이형' 벽 로그법칙식과 '안정도 고려 거칠기 높이형' 벽 로그법칙모델 간 편향과 평균 제곱근 편차는 각각 $-0.001m\;s^{-1}$$0.122m\;s^{-1}$로 가장 낮아 실시간 현업 운용 측면에서 상호 보완적으로 이 두 변환식을 함께 사용하는 것이 바람직하다는 결론을 도출하였다. 또한 이어도 해역에서 조석에 의한 풍속 관측 고도 변화가 풍속 변환에 미치는 영향을 분석하였다. 이들 변환식에 대한 조석 효과 고려 전후에 대한 비교 실험 결과, 편향과 평균 제곱근 편차는 각각 <$0.0001m\;s^{-1}$와 <$0.012m\;s^{-1}$로 그 영향은 미미하였다. 대기 표면 거칠기 높이를 사용하는 '거칠기 높이형' 벽 로그법칙식과 '안정도 고려 거칠기 높이형' 벽 로그 법칙모델을 이용하여 간편 풍속 변환식의 필수 입력값인 표면 거칠기 높이 값의 적절성에 관해 논의하였으며, 풍속 변환 정확도를 향상시킬 수 있는 표면 거칠기 높이 계산식을 제시하였다. 또한 인공위성 산란계(ASCAT) 풍속자료와 네 종류의 중립 연직 풍속 변환식들의 결과를 비교하여 이들 중 '안정도 고려 거칠기 높이형' 벽 로그법칙모델에서 안정도 항을 뺀 풍속 변환 모델의 정확도가 더 낫다는 결과를 제시하였다. 끝으로 이들 종래 $25m\;s^{-1}$ 이하 풍속에 최적화된 풍속 변환식들로부터 바람 항력계수를 산정 분석하여 강풍(${\geq}33m\;s^{-1}$) 환경에서도 적합한 풍속 변환식으로 개선 필요성에 관해 논의하였다.