Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.
신재생에너지 산업이 발전함에 따라 태양광 발전에 대한 중요성이 확대되고 있다. 태양광 발전량을 정확히 예측하기 위해서는 일사량 예측이 필수적이다. 본 논문에서는 태양광 패널이 존재하는 청주와 광주 지역을 선정하여 기상포털에서 제공하는 시간별 기상 데이터를 수집하여 연구하였다. 일사량 예측을 위하여 시계열 모형인 ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA-GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH 모형을 비교하였다. 본 연구에서는 모형의 예측 성능을 비교하고자 mean absolute error와 root mean square error를 사용하였다. 모형들의 예측 성능 비교 결과 일사량만 고려하였을 때는 이분산 문제를 고려한 seasonal ARIMA-GARCH 모형이 우수한 성능을 나타냈고, 외생변수를 활용한 ARIMAX 모형으로 일사량 예측을 한 경우가 가장 좋은 예측력을 나타냈다.
In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.
Anna Antonella, Spina;Carlotta, Ceniti;Cristian, Piras;Bruno, Tilocca;Domenico, Britti;Valeria Maria, Morittu
Journal of Animal Science and Technology
/
제64권3호
/
pp.531-538
/
2022
In Italy, buffalo mozzarella is a largely sold and consumed dairy product. The fraudulent adulteration of buffalo milk with cheaper and more available milk of other species is very frequent. In the present study, Fourier transform infrared spectroscopy (FTIR), in combination with multivariate analysis by partial least square (PLS) regression, was applied to quantitatively detect the adulteration of buffalo milk with cow milk by using a fully automatic equipment dedicated to the routine analysis of the milk composition. To enhance the heterogeneity, cow and buffalo bulk milk was collected for a period of over three years from different dairy farms. A total of 119 samples were used for the analysis to generate 17 different concentrations of buffalo-cow milk mixtures. This procedure was used to enhance variability and to properly randomize the trials. The obtained calibration model showed an R2 ≥ 0.99 (R2 cal. = 0.99861; root mean square error of cross-validation [RMSEC] = 2.04; R2 val. = 0.99803; root mean square error of prediction [RMSEP] = 2.84; root mean square error of cross-validation [RMSECV] = 2.44) suggesting that this method could be successfully applied in the routine analysis of buffalo milk composition, providing rapid screening for possible adulteration with cow's milk at no additional cost.
Flexible roll forming is an advanced sheet-metal-forming process that allows the production of parts with various cross-sections. During the flexible process, material is subjected to three-dimensional deformation such as transverse bending, inhomogeneous elongations, or contraction. Because of the effects of process variables on the quality of the roll-formed products, the approaches used to investigate the roll-forming process have been largely dependent on experience and trial- and-error methods. Web-warping is one of the major shape defects encountered in flexible roll forming. In this study, an SVR model was developed to predict the web-warping during the flexible roll forming process. In the development of the SVR model, three process parameters, namely the forming-roll speed condition, leveling-roll height, and bend angle were considered as the model inputs, and the web-warping height was used as the response variable for three blank shapes; rectangular, concave, and convex shape. MATLAB software was used to train the SVR model and optimize three hyperparameters (λ, ε, and γ). To evaluate the SVR model performance, the statistical analysis was carried out based on the three indicators: the root-mean-square error, mean absolute error, and relative root-mean-square error.
This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.
Communications for Statistical Applications and Methods
/
제30권3호
/
pp.273-289
/
2023
In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.
본 논문에서는 비선형성을 가지는 측정방정식의 상태값을 효과적으로 추정할 수 있는 확장칼만필터(Extended Kalman Filter/EKF)와 확장칼만필터의 변종들 그리고 코스트 레퍼런스 파티클필터(Cost-Reference Particle Filter/CRPF)를 이용하여 이차원 공간에서 표적추적 성능에 관하여 연구한다. 확장칼만필터의 변종으로 분산점칼만필터(Unscented Kalman Filter/UKF), 중심차분칼만필터(Central Difference Kalman Filter/CDKF), 제곱근 분산점칼만필터(Square Root Unscented Kalman Filter/SR-UKF) 그리고 제곱근 중심차분칼만필터(Square Root Central Difference Kalman Filter/SR-CDKF)를 소개한다. 본 연구에서는 노이즈가 불확실한 표적에 대하여 몬테카를로 시뮬레이션 기법을 이용하여 각 필터들의 평균제곱오차(Mean Square Error/MSE)를 계산하였다. 시뮬레이션 결과 확장칼만필터의 변종들 중에서 제곱근 중심차분칼만필터가 속도와 성능 면에서 가장 우수한 결과를 보여주었다. 코스트 레퍼런스 파티클 필터는 확장칼만필터와 다르게 노이즈의 확률 분포를 알 필요가 없다는 유리한 특성을 가지고 있으며 시뮬레이션 결과 제곱근 중심차분칼만필터보다 처리속도 및 정확도 면에서 우수한 결과를 보여주었다.
A big data processing method to predict solar power generation using systems engineering approach is developed in this work. For developing analytical method, linear model (LM), support vector machine (SVN), and artificial neural network (ANN) technique are chosen. As evaluation indices, the cross-correlation and the mean square root of prediction error (RMSEP) are used. From multi-variable comparison test, it was found that ANN methodology provides the highest correlation and the lowest RMSEP.
This study was conducted to develop a soil moisture meter using capacitance probe. A parallel cylinder type capacitance probe (C-probe) was fabricated The 5 MHz of crystal oscillator was constructed to detect the capacitance change of the C-probe with moist soil. A third order polynomial regression model for volumetric water content having oscillation frequency changes at 5 MHz as independent variables presented the determination coefficient of 0.979 and root mean square error of $0.031\;cm^{3}cm^{3}$ for all soil samples. A prototype soil moisture meter consisting of the sample container, C-probe, oscillator, frequency counter and related signal procession units presented the correlation coefficient of 0.987 and the root mean square error of $0.032\;cm^{3}cm^{3}$ as compared with the oven drying method for unknown soil samples.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.