• 제목/요약/키워드: Root mean square error

검색결과 1,236건 처리시간 0.025초

농업기상 결측치 보정을 위한 통계적 시공간모형 (A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model)

  • 박다인;윤상후
    • 한국환경과학회지
    • /
    • 제27권7호
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

시계열 모형을 활용한 일사량 예측 연구 (Solar radiation forecasting by time series models)

  • 서유민;손흥구;김삼용
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.785-799
    • /
    • 2018
  • 신재생에너지 산업이 발전함에 따라 태양광 발전에 대한 중요성이 확대되고 있다. 태양광 발전량을 정확히 예측하기 위해서는 일사량 예측이 필수적이다. 본 논문에서는 태양광 패널이 존재하는 청주와 광주 지역을 선정하여 기상포털에서 제공하는 시간별 기상 데이터를 수집하여 연구하였다. 일사량 예측을 위하여 시계열 모형인 ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA-GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH 모형을 비교하였다. 본 연구에서는 모형의 예측 성능을 비교하고자 mean absolute error와 root mean square error를 사용하였다. 모형들의 예측 성능 비교 결과 일사량만 고려하였을 때는 이분산 문제를 고려한 seasonal ARIMA-GARCH 모형이 우수한 성능을 나타냈고, 외생변수를 활용한 ARIMAX 모형으로 일사량 예측을 한 경우가 가장 좋은 예측력을 나타냈다.

특이값 분해를 이용한 치수측정 기반 디지털 트윈 알고리즘 경량화 (Lightweight Algorithm for Digital Twin based on Diameter Measurement using Singular-Value-Decomposition)

  • 이승민;박대진
    • 대한임베디드공학회논문지
    • /
    • 제18권3호
    • /
    • pp.117-124
    • /
    • 2023
  • In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.

Mid-infrared (MIR) spectroscopy for the detection of cow's milk in buffalo milk

  • Anna Antonella, Spina;Carlotta, Ceniti;Cristian, Piras;Bruno, Tilocca;Domenico, Britti;Valeria Maria, Morittu
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.531-538
    • /
    • 2022
  • In Italy, buffalo mozzarella is a largely sold and consumed dairy product. The fraudulent adulteration of buffalo milk with cheaper and more available milk of other species is very frequent. In the present study, Fourier transform infrared spectroscopy (FTIR), in combination with multivariate analysis by partial least square (PLS) regression, was applied to quantitatively detect the adulteration of buffalo milk with cow milk by using a fully automatic equipment dedicated to the routine analysis of the milk composition. To enhance the heterogeneity, cow and buffalo bulk milk was collected for a period of over three years from different dairy farms. A total of 119 samples were used for the analysis to generate 17 different concentrations of buffalo-cow milk mixtures. This procedure was used to enhance variability and to properly randomize the trials. The obtained calibration model showed an R2 ≥ 0.99 (R2 cal. = 0.99861; root mean square error of cross-validation [RMSEC] = 2.04; R2 val. = 0.99803; root mean square error of prediction [RMSEP] = 2.84; root mean square error of cross-validation [RMSECV] = 2.44) suggesting that this method could be successfully applied in the routine analysis of buffalo milk composition, providing rapid screening for possible adulteration with cow's milk at no additional cost.

머신러닝을 활용한 가변 롤포밍 공정 web-warping 예측모델 개발 (Application of Machine Learning to Predict Web-warping in Flexible Roll Forming Process)

  • 우영윤;문영훈
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.282-289
    • /
    • 2020
  • Flexible roll forming is an advanced sheet-metal-forming process that allows the production of parts with various cross-sections. During the flexible process, material is subjected to three-dimensional deformation such as transverse bending, inhomogeneous elongations, or contraction. Because of the effects of process variables on the quality of the roll-formed products, the approaches used to investigate the roll-forming process have been largely dependent on experience and trial- and-error methods. Web-warping is one of the major shape defects encountered in flexible roll forming. In this study, an SVR model was developed to predict the web-warping during the flexible roll forming process. In the development of the SVR model, three process parameters, namely the forming-roll speed condition, leveling-roll height, and bend angle were considered as the model inputs, and the web-warping height was used as the response variable for three blank shapes; rectangular, concave, and convex shape. MATLAB software was used to train the SVR model and optimize three hyperparameters (λ, ε, and γ). To evaluate the SVR model performance, the statistical analysis was carried out based on the three indicators: the root-mean-square error, mean absolute error, and relative root-mean-square error.

단상 계통연계형 인버터의 SRF-PLL 옵셋 오차로 인한 전류 맥동 저감에 관한 연구 (A Study on Current Ripple Reduction Due to Offset Error in SRF-PLL for Single-phase Grid-connected Inverters)

  • 황선환;황영기;권순걸
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.68-76
    • /
    • 2014
  • This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.

노이즈 불확실성하에서의 확장칼만필터의 변종들과 코스트 레퍼런스 파티클필터를 이용한 표적추적 성능비교 (Performance Comparison of Various Extended Kalman Filter and Cost-Reference Particle Filter for Target Tracking with Unknown Noise)

  • 신명인;홍우영
    • 한국시뮬레이션학회논문지
    • /
    • 제27권3호
    • /
    • pp.99-107
    • /
    • 2018
  • 본 논문에서는 비선형성을 가지는 측정방정식의 상태값을 효과적으로 추정할 수 있는 확장칼만필터(Extended Kalman Filter/EKF)와 확장칼만필터의 변종들 그리고 코스트 레퍼런스 파티클필터(Cost-Reference Particle Filter/CRPF)를 이용하여 이차원 공간에서 표적추적 성능에 관하여 연구한다. 확장칼만필터의 변종으로 분산점칼만필터(Unscented Kalman Filter/UKF), 중심차분칼만필터(Central Difference Kalman Filter/CDKF), 제곱근 분산점칼만필터(Square Root Unscented Kalman Filter/SR-UKF) 그리고 제곱근 중심차분칼만필터(Square Root Central Difference Kalman Filter/SR-CDKF)를 소개한다. 본 연구에서는 노이즈가 불확실한 표적에 대하여 몬테카를로 시뮬레이션 기법을 이용하여 각 필터들의 평균제곱오차(Mean Square Error/MSE)를 계산하였다. 시뮬레이션 결과 확장칼만필터의 변종들 중에서 제곱근 중심차분칼만필터가 속도와 성능 면에서 가장 우수한 결과를 보여주었다. 코스트 레퍼런스 파티클 필터는 확장칼만필터와 다르게 노이즈의 확률 분포를 알 필요가 없다는 유리한 특성을 가지고 있으며 시뮬레이션 결과 제곱근 중심차분칼만필터보다 처리속도 및 정확도 면에서 우수한 결과를 보여주었다.

태양광 발전량 예측을 위한 빅데이터 처리 방법 개발 (Development of Solar Power Output Prediction Method using Big Data Processing Technic)

  • 정재천;송치성
    • 시스템엔지니어링학술지
    • /
    • 제16권1호
    • /
    • pp.58-67
    • /
    • 2020
  • A big data processing method to predict solar power generation using systems engineering approach is developed in this work. For developing analytical method, linear model (LM), support vector machine (SVN), and artificial neural network (ANN) technique are chosen. As evaluation indices, the cross-correlation and the mean square root of prediction error (RMSEP) are used. From multi-variable comparison test, it was found that ANN methodology provides the highest correlation and the lowest RMSEP.

정전용량 탐침을 이용한 토양수분 측정장치 개발 (Developement of Soil Moisture Meter using Capacitance Probe)

  • 김기복;이남호;이종환;이승석
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.65-68
    • /
    • 2001
  • This study was conducted to develop a soil moisture meter using capacitance probe. A parallel cylinder type capacitance probe (C-probe) was fabricated The 5 MHz of crystal oscillator was constructed to detect the capacitance change of the C-probe with moist soil. A third order polynomial regression model for volumetric water content having oscillation frequency changes at 5 MHz as independent variables presented the determination coefficient of 0.979 and root mean square error of $0.031\;cm^{3}cm^{3}$ for all soil samples. A prototype soil moisture meter consisting of the sample container, C-probe, oscillator, frequency counter and related signal procession units presented the correlation coefficient of 0.987 and the root mean square error of $0.032\;cm^{3}cm^{3}$ as compared with the oven drying method for unknown soil samples.

  • PDF