• Title/Summary/Keyword: Root mean square (RMS)

Search Result 495, Processing Time 0.036 seconds

Effect of Fluorination and Ultrasonic Washing Treatment on Surface Characteristic of Poly(ethylene terephthalate) (불소화 및 초음파 수세가 폴리(에틸렌 테레프탈레이트) 필름의 표면 특성에 미치는 영향)

  • Kim, Do Young;In, Se Jin;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.316-322
    • /
    • 2013
  • In this study, poly(ethylene terephthalate) (PET) was treated with fluorination and ultrasonic washing treatment for hydrophilic modification of PET film. We measured the change of surface modified PET film surface characteristics using contact angle, surface free energy, FE-SEM, AFM and XPS. After direct fluorination and ultrasonic washing treatment, the water contact angle was measured to be $10.81^{\circ}$, 85% reduction compared to the untreated PET film. Total surface free energy has been measured to be $42.25mNm^{-1}$, 650% increase compared to the untreated PET film. Also RMS roughness has been measured to be 1.965 nm, 348% increase compared to the untreated PET film. Hydrophilic functional group C-OH bond concentration has increased approximately 3 times. These results are attributed to the hydrophilic functional group and cavitation due to chemical etching. From this result, it was suggested that the fluorination-ultrasonic washing treatment method could be useful to make PET film surface hydrophilic.

Measurement of Sputtering Yield of $RF-O_2$ Plasma treated MgO Thin Films ($RF-O_2$ Plasma 처리한 MgO 박막의 스퍼터링 수율 측정)

  • Jeong, W.H.;Jeong, K.W.;Lim, Y.C.;Oh, H.J.;Park, C.W.;Choi, E.H.;Seo, Y.H.;Kim, Y.K.;Kang, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.259-265
    • /
    • 2006
  • We measured sputtering yield of RF $O_2-plasma$ treated MgO protective layer for AC-PDP(plasma display panel) using a Focused ion Beam System(FIB). A 10 kV acceleration voltage was applied. The sputtering yield of the untreated sample and the treated sample were 0.33 atoms/ion and 0.20 atoms/ion, respectively. The influence of the plasma-treatment of MgO thin film was characterized by XPS and AFM analysis. We observed that the binding energy of the O 1s spectra, the FWHM of O 1s spectra and the RMS(root-mean-square) of surface roughness decreased to 2.36 eV, 0.6167 eV and 0.32 nm, respectively.

Fabrication of Bendable Gd2O2S:Tb Intensifying Screen and Evaluation of Fatigue Properties (유연한 Gd2O2S:Tb 증감지 제작 및 피로누적에 대한 영향)

  • Park, Ji-Koon;Yang, Sung-Woo;Jeon, Je-Hoon;Kim, Joo-Hee;Heo, Ye-Ji;Kang, Sang-Sik;Kim, Kyo-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.611-617
    • /
    • 2017
  • In this study, it was expected that long-term stability against external mechanical external force could be secured if the phosphor layer had ductility. In this study, a bendable $Gd_2O_2S:Tb$ sensitized paper was fabricated by screen printing method and the image uniformity was evaluated through RMS analysis and histogram analysis to investigate the effect of fatigue accumulation due to long-term external force and repetitive external force. As a result, the dominant pixel area is maintained constant and the relative standard deviation is less than 10% for the long-term external force. However, for the repetitive external force, the dominant pixel area is divided into three areas and the image uniformity is adversely affected. Based on these results, it is suggested that the curved surface detector can be applied by securing the mechanical stability against the existing radiation sensitized paper. However, further studies are needed to apply it to the flexible detector. As a result, flexible radiation sensitizers can be applied to various curved surfaces, and it is expected to be applicable to various fields such as nuclear medicine, medical treatment, and industrial fields in the future.

The Improved Characteristics of Wet Anisotropic Etching of Si with Megasonic Wave (Megasonic wave를 이용한 실리콘 이방성 습식 식각의 특성 개선)

  • Che Woo-Seong;Suk Chang-Gil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.81-86
    • /
    • 2004
  • A new method to improve the wet etching characteristics is described. The anisotropic wet-etching of (100) Si with megasonic wave has been studied in KOH solution. Etching characteristics of p-type (100) 6 inch Si have been explored with and without megasonic irradiation. It has been observed that megasonic irradiation improves the characteristics of wet etching such as an etch uniformity and surface roughness. The etching uniformity on the whole wafer with and without megasonic irradiation were less than ${\pm}1\%$ and more than $20\%$, respectively. The initial root-mean-square roughness($R_{rms}$) of single crystal silicon is 0.23 nm. It has been reported that the roughnesses with magnetic stirring and ultrasonic agitation were 566 nm and 66 nm, respectively. Comparing with the results, etching with megasonic irradiation achieved the Rrms of 1.7 nm on the surface after the $37{\mu}m$ of etching depth. Wet etching of silicon with megasonic irradiation can maintain nearly the original surface roughness after etching process. The results have verified that the megasonic irradiation is an effective way to improve the etching characteristics such as etch uniformity and surface roughness.

  • PDF

Remote Plasma Enhanced-Ultrahigh Vacuum Chemical Vappor Deposition (RPE-UHVCD)법을 이용한 GaN의 저온 성장에 관한 연구

  • 김정국;김동준;박성주
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.108-108
    • /
    • 1998
  • 최근의 GaN에 관한 연구는 주로 MOCVD법과 MBE법이 이용되고 있으며 대부분 800¬1$\alpha$)()t 정도의 고옹에서 이루어지고 었다. 그러나 이러한 고온 성장은 GaN 성장 과청에서 질 소 vacancy를 생성시켜 광특성을 저하시키고 청색 발광충인 InGaN 화합물에 In의 유입울 어 렵게 하며 저온에서보다 탄소 오염이 증가하는 동의 문제캠을 가지고 있다. 이러한 고온 생장 의 문제점을 해결하기 위한 방법중의 한 가지로 제시되고 있는 것이 저온 성장법이다. 본 연구 에 사용된 RPE-UHVCVD법은 Nz률 rf plasma로 $\sigma$acking하여 공급함으로써 NI-h롤 질소원으 로 사용하는 고온 성장의 청우와는 다르게 온도에 크게 의존하지 고 질소원올 공급할 수 있 어 저옹 성장이 가능하였다. 기판으로는 a - Alz03($\alpha$)()1)를 사용하였고 3족원은 TEGa(triethylgallium)이며,5족원으로는 6 6-nine Nz gas를 rf plasma로 cracking하여 활성 질소원올 공급하였다 .. Nz plasma로 질화처리 를 한 sapphire 표면 위에 G따애 핵생성충을 성장 옹도(350 t, 375 t, 400 t)와 성장시간(30 분,50 분) 그리고 VIllI비(1$\alpha$)(), 2뼈)둥을 변화시키면서 성장시킨 후 GaN 에피택시충을 450 $^{\circ}C$에서 120 분 동안 성장시켰다 .. XPS(x-ray photoelectron spectroscopy), XRD(x-ray d diffraction), AFM(atomic force microscope)둥올 이용하여 표면의 조성 및 morphology 변화와 결정성을 관찰하였다. X XPS 분석 결과 질화처리를 한 sapphire 표면에는 AlN가 형성되었다는 것을 확인 할 수 있 었으며 질화처리를 한 후 G따J 핵생성충올 성장시킨 경우에 morphology 변화를 AFM으로 살 펴본 결과 표면에 facet shape의 island가 형성되었고 이러한 결파는 질화처리 과청이 facet s shape의 island 형성을 촉진시킨다는 것을 알 수 있었다. 핵생성충의 성장온도가 중가함에 따 라 island의 모양은 round shape에서 facet shape으로 변화하였다. 이러한 표면의 morphology 변화와 GaN 에피택시충의 결정성과의 관계를 살펴보면 GaN 에피택시충 표면의 rms(root m mean square) roughness가 중가하는 경 우 XRD (j -rocking curve의 FWHM(full width half m maximum) 값이 감소하는 것으로 나타났다. 이러한 현상은 결정성의 향상이 columnar 성장과 관계가 었다는 것올 알 수 있었다 .. columnar 성장은 결함의 밀도가 낮은 column의 형생과 G GaN 에피택시충의 웅력 제거로 인해 G값{의 결정성을 향상시킬 수 있는 것으로 생각된다. 톡 히 고온 성장의 경우와는 달리 rms roughness의 중가가 100-150 A청도로 명탄한 표면올 유 지하면서 결정성을 향상시킬 수 있었다. 본 실험에서는 핵생성충올 375 t에서 30 분 생장시킨 경우에 hexagonal 모양의 island로 columnar 성장을 하였고 GaN 에피태시충의 결정성도 가장 향상되었다 이상의 결과로부터 RPE-UHVCVD법용 이용한 GaN 저온 성장에서도 GaN의 결청성올 향 상시킬 수 있음융 확인할 수 있었다.

  • PDF

Measurement of Large Mirror Surface using a Laser Tracker (레이저트래커(Laser Tracker)를 이용한 대형 광학 거울의 형상 측정)

  • Jo, Eun-Ha;Yang, Ho-Soon;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.331-337
    • /
    • 2013
  • A large optical surface is fabricated by grinding, polishing and figuring. The grinding process is the most rapid and has the largest amount of fabrication of all processes. If we measure the surface precisely and rapidly in the grinding process, it is possible to improve the efficiency of the fabrication process. Since the surface of grinding process is rough and not shiny, it is not easy to measure the surface using light so that we cannot use an interferometer. Therefore, we have to measure the surface using a mechanical method. We can measure the surface under the grinding process by using a laser tracker which is a portable 3-dimensional coordinate measuring machine. In this paper, we used the laser tracker to measure the surface error of 1 m diameter spherical mirror. This measurement result was compared to that of an interferometer. As a result, surface measurement error was found to be $0.2{\mu}m$ rms (root mean square) and $2.7{\mu}m$ PV (Peak to Valley), which is accurate enough to apply to the rough surface under the grinding stage.

A Study on Design Optimization of an Axle Spring for Multi-axis Stiffness (다중 축 강성을 위한 축상 스프링 최적설계 연구)

  • Hwang, In-Kyeong;Hur, Hyun-Moo;Kim, Myeong-Jun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2017
  • The primary suspension system of a railway vehicle restrains the wheelset and the bogie, which greatly affects the dynamic characteristics of the vehicle depending on the stiffness in each direction. In order to improve the dynamic characteristics, different stiffness in each direction is required. However, designing different stiffness in each direction is difficult in the case of a general suspension device. To address this, in this paper, an optimization technique is applied to design different stiffness in each direction by using a conical rubber spring. The optimization is performed by using target and analysis RMS values. Lastly, the final model is proposed by complementing the shape of the weak part of the model. An actual model is developed and the reliability of the optimization model is proved on the basis of a deviation average of about 7.7% compared to the target stiffness through a static load test. In addition, the stiffness value is applied to a multibody dynamics model to analyze the stability and curve performance. The critical speed of the improved model was 190km/h, which was faster than the maximum speed of 110km/h. In addition, the steering performance is improved by 34% compared with the conventional model.

Flow Distribution in an Electrostatic Precipitator with a Perforated Plate (타공판에 따른 전기집진기 내의 유동분포)

  • Kim, Dong-uk;Jung, Sang-Hyun;Shim, Sung-Hoon;Kim, Jin Tae;Lee, Sang-Sup
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.147-152
    • /
    • 2019
  • Electrostatic precipitator that shows a good performance for the removal of particulate matter is important for controlling emissions from industrial facilities and power plants. The efficiency of the electrostatic precipitator on the removal of particulate matter is highly affected by the flow pattern inside the electrostatic precipitator. A number of studies have been conducted to obtain uniform flow distribution inside electrostatic precipitators. An electrostatic precipitator (ESP) with a length of 3.5 m and a height of 0.875 m was designed and installed in this study. The ESP included an inlet duct, diffuser, body, and contractor. Three perforated plates were installed in the diffuser of the ESP. Five pitot tubes were installed vertically and used to measure flow distribution in the cross section of the ESP body. Root mean square deviation value (RMS%) was used to examine the flow distribution inside the ESP when the perforated plates were installed in the diffuser. Flow distribution was also investigated in relation to the porosity of the perforated plate. The results showed that the perforated plates improved greatly the flow distribution inside the electrostatic precipitator. In addition, the most uniform flow distribution was found with 40%, 50%, and 50% porous perforated plates located from the inlet of the diffuser.

Analysis of acoustic emission parameters according to failure of rock specimens (암석시편 파괴에 따른 acoustic emission 특성인자 분석)

  • Lee, Jong-Won;Oh, Tae-Min;Kim, Hyunwoo;Kim, Min-Jun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.657-673
    • /
    • 2019
  • A monitoring method based on acoustic emission (AE) sensor has been widely used to evaluate the damage of structures in underground rock. The acoustic emission signal generated from cracking in material is analyzed as various acoustic emission parameters in time and frequency domain. To investigate from initial crack generation to final failure of rock material, it is important to understand the characteristics of acoustic emission parameters according to the stress ratio and rock strength. In this study, uniaxial compression tests were performed using very strong and weak rock specimen in order to investigate the acoustic emission parameters when the failure of specimen occurred. In the results of experimental tests, the event, root-mean-square (RMS) voltage, amplitude, and absolute energy of very strong rock specimen were larger than those of the weak rock specimen with an increase of stress ratio. In addition, the acoustic emission parameters related in frequency were more affected by specification (e.g., operation and resonant frequency) of sensors than the stress ratio or rock strength. It is expected that this study may be meaningful for evaluating the damage of underground rock when the health monitoring based on the acoustic emission technique will be performed.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.