• Title/Summary/Keyword: Root mean square (RMS)

Search Result 495, Processing Time 0.035 seconds

Wavefront Compensation Using a Silicon Carbide Deformable Mirror with 37 Actuators for Adaptive Optics (적응광학계용 37채널 SiC 변형거울을 이용한 파면 보상)

  • Ahn, Kyohoon;Rhee, Hyug-Gyo;Lee, Ho-Jae;Lee, Jun-Ho;Yang, Ho-Soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.3
    • /
    • pp.106-113
    • /
    • 2016
  • In this paper, we deal with the wavefront compensation capability of a silicon carbide (SiC) deformable mirror (DM) with 37 actuators for adaptive optics. The wavefront compensation capability of the SiC DM is predicted by computer simulation and examined by actual experiments with a closed-loop adaptive optics system consistsing of a light source, a phase plate, a SiC DM, a high speed Shack-Hartmann sensor, and a control computer. Distortion of wavefront is caused by the phase plate in the closed-loop adaptive optics system. The distorted wavefront has a peak-to-valley (PV) wavefront error of $0.3{\mu}m{\sim}0.9{\mu}m$ and root-mean-square (RMS) error of $0.06{\mu}m{\sim}0.25{\mu}m$. The high-speed Shack-Hartmann sensor measures the wavefront error of the distortion caused by the phase plate, and the SiC DM compensates for the distorted wavefront. The compensated wavefront has residual errors lower than $0.1{\mu}m$ PV and $0.03{\mu}m$ RMS. Consequently, we conclude that we can compensate for the distorted wavefront using the SiC DM in the closed-loop adaptive optics system with an operating frequency speed of 500 Hz.

Analysis of Propagation Characteristics in 6, 10, and 17 GHz Semi-Basement Indoor Corridor Environment (6, 10, 17 GHz 반지하 실내 복도 환경의 전파 특성 분석)

  • Lee, Seong-Hun;Cho, Byung-Lok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.555-562
    • /
    • 2022
  • This study measured and analyzed the propagation characteristics at frequencies 6, 10, and 17 GHz to discover the new propagation demands in a semi-basement indoor corridor environment for meeting the 4th industrial revolution requirements. The measured indoor environment is a straight corridor consisting of three lecture rooms and glass windows on the outside. The measurement scenario development and measurement system were constructed to match this environment. The transmitting antenna was fixed, and the frequency domain and time domain propagation characteristics were measured and analyzed in the line-of-sight environment based on the distance of the receiving antenna location. In the frequency domain, reliability was determined by the parameters of the floating intercept (FI) path loss model and an R-squared value of 0.5 or more. In the time domain, the root mean square (RMS) delay spread and the cumulative probability of K-factor were used to determine that 6 GHz had high propagation power and 17 GHz had low propagation power. These research results will be effective in providing ultra-connection and ultra-delay artificial intelligence services for WIFI 6, 5G, and future systems in a semi-basement indoor corridor environment.

Effect of abutment superimposition process of dental model scanner on final virtual model (치과용 모형 스캐너의 지대치 중첩 과정이 최종 가상 모형에 미치는 영향)

  • Yu, Beom-Young;Son, Keunbada;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.203-210
    • /
    • 2019
  • Purpose: The purpose of this study was to verify the effect of the abutment superimposition process on the final virtual model in the scanning process of single and 3-units bridge model using a dental model scanner. Materials and methods: A gypsum model for single and 3-unit bridges was manufactured for evaluating. And working casts with removable dies were made using Pindex system. A dental model scanner (3Shape E1 scanner) was used to obtain CAD reference model (CRM) and CAD test model (CTM). The CRM was scanned without removing after dividing the abutments in the working cast. Then, CTM was scanned with separated from the divided abutments and superimposed on the CRM (n=20). Finally, three-dimensional analysis software (Geomagic control X) was used to analyze the root mean square (RMS) and Mann-Whitney U test was used for statistical analysis (${\alpha}=.05$). Results: The RMS mean abutment for single full crown preparation was $10.93{\mu}m$ and the RMS average abutment for 3 unit bridge preparation was $6.9{\mu}m$. The RMS mean of the two groups showed statistically significant differences (P<.001). In addition, errors of positive and negative of two groups averaged $9.83{\mu}m$, $-6.79{\mu}m$ and 3-units bridge abutment $6.22{\mu}m$, $-3.3{\mu}m$, respectively. The mean values of the errors of positive and negative of two groups were all statistically significantly lower in 3-unit bridge abutments (P<.001). Conclusion: Although the number of abutments increased during the scan process of the working cast with removable dies, the error due to the superimposition of abutments did not increase. There was also a significantly higher error in single abutments, but within the range of clinically acceptable scan accuracy.

Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method

  • Jeong, Yoo-Geum;Lee, Wan-Sun;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2018
  • PURPOSE. To evaluate the accuracy of a model made using the computer-aided design/computer-aided manufacture (CAD/CAM) milling method and 3D printing method and to confirm its applicability as a work model for dental prosthesis production. MATERIALS AND METHODS. First, a natural tooth model (ANA-4, Frasaco, Germany) was scanned using an oral scanner. The obtained scan data were then used as a CAD reference model (CRM), to produce a total of 10 models each, either using the milling method or the 3D printing method. The 20 models were then scanned using a desktop scanner and the CAD test model was formed. The accuracy of the two groups was compared using dedicated software to calculate the root mean square (RMS) value after superimposing CRM and CAD test model (CTM). RESULTS. The RMS value ($152{\pm}52{\mu}m$) of the model manufactured by the milling method was significantly higher than the RMS value ($52{\pm}9{\mu}m$) of the model produced by the 3D printing method. CONCLUSION. The accuracy of the 3D printing method is superior to that of the milling method, but at present, both methods are limited in their application as a work model for prosthesis manufacture.

Faraday Rotation Measure in the Large Scale Structure III

  • Akahori, Takuya;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • The nature and origin of the intergalactic magnetic field (IGMF) are an outstanding problem of cosmology, yet they are not well understood. Measuring Faraday rotation (RM) is one of a few promising methods to explore the IGMF. We have theoretically investigated RM using a model of the IGMF based on a MHD turbulence dynamo (Ryu et al. 2008; Cho et al. 2009). In the previous KAS meeting, we reported the results for the present-day local universe; for instance, the probability distribution function (PDF) of ${\mid}RM{\mid}$ follows the lognormal distribution, the root mean square (rms) value for filaments is ~1 rad m^{-2}, and the power spectrum peaks at ~1 h^{-1} Mpc scale. In this talk, we extend our study of RM; by stacking simulation data up to redshift z=5 and taking account of the redshift distribution of radio sources, we have reproduced an observable view of RM through filaments against background radio sources. Our findings are as follows. The inducement of RM is a random walk process, so that the rms of RM increases with increasing path length. The rms value of RM for filaments reaches several rad m^{-2}. The PDF still follows the lognormal distribution, and the power spectrum of RM peaks at less than degree scale. Our predictions of RM could be tested, for instance, with LOFAR, ASKAP, MEERKAT, and SKA.

  • PDF

The Analysis of Rectus Femoris Muscle Fatigue Patterns According to Sex using Dynamometer and sEMG during Isometric Contraction to Normal Subjects (동력계 및 표면근전도를 이용한 정상인의 등척성 수축 시 성별 차이에 따른 대퇴직근의 피로 양상분석)

  • Kim, Yong-Nam
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.3
    • /
    • pp.11-17
    • /
    • 2007
  • Purpose: The purpose of this study were to analyze fatigue patterns of the rectus femoris muscle by isometric contraction. Methods: Twenty healthy subjects(10 male, 10 female) participated in this study. Maximal voluntary isometric contraction(MVIC) was measured by the dynamometer. Muscle activity was recorded from the rectus femoris muscle. During the experiment, the subject was seated in the chair. The measured items, median frequency(MDF) and root mean square (RMS), were collected from the surface EMG. All data were analyzed using repeated measures ANOVA. Results: There was significant difference of MVIC between male and female. Endurance time was significant difference by the level of MVIC but no significant in the main effect(sex) and interaction effect. The MDF and fatigue index were significant differences in the interaction effect. The RMS was not significant difference in both of main and interaction effect. The muscle fatigue patterns of female was greater than male after 60% MVIC. Conclusion: This study showed that sex differences of muscle fatigue were started from 60% MVIC.

  • PDF

Orbit Prediction using Broadcast Ephemeris for GLONASS Satellite Visibility Analysis (GLONASS 위성 가시성 분석을 위한 방송궤도력 기반 궤도 예측)

  • Kim, Hye-In;Park, Kwan-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.199-210
    • /
    • 2009
  • Even though there are several Global Navigation Satellite Systems under development, only GPS and GLONASS are currently available for satellite positioning. In this study, GLONASS orbits were predicted from broadcast ephemeris using the 4th-order Runge-Kutta numerical integration. For accuracy validation, predicted orbits were compared with precise ephemeris. The RMS(Root Mean Square) and maximum 3-D errors were 14.3 km and 17.4 km for one-day predictions. In case of 7-day predictions, the RMS and maximum 3-D errors were 15.7 and 40.1 km, respectively. Also, the GLONASS satellite visibility predictions were compared with real observations, and they agree perfectly except for several epochs when the satellite signal was blocked by nearby buildings.

Validation of Geostationary Earth Orbit Satellite Ephemeris Generated from Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • This study presents the generation and accuracy assessment of predicted orbital ephemeris based on satellite laser ranging (SLR) for geostationary Earth orbit (GEO) satellites. Two GEO satellites are considered: GEO-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) for simulational validation and Compass-G1 for real-world quality assessment. SLR-based orbit determination (OD) is proactively performed to generate orbital ephemeris. The length and the gap of the predicted orbital ephemeris were set by considering the consolidated prediction format (CPF). The resultant predicted ephemeris of GK-2B is directly compared with a pre-specified true orbit to show 17.461 m and 23.978 m, in 3D root-mean-square (RMS) position error and maximum position error for one day, respectively. The predicted ephemeris of Compass-G1 is overlapped with the Global Navigation Satellite System (GNSS) final orbit from the GeoForschungsZentrum (GFZ) analysis center (AC) to yield 36.760 m in 3D RMS position differences. It is also compared with the CPF orbit from the International Laser Ranging Service (ILRS) to present 109.888 m in 3D RMS position differences. These results imply that SLR-based orbital ephemeris can be an alternative candidate for improving the accuracy of commonly used radar-based orbital ephemeris for GEO satellites.

Evaluation of neutron attenuation properties using helium-4 scintillation detector for dry cask inspection

  • Jihun Moon;Jisu Kim;Heejun Chung;Sung-Woo Kwak;Kyung Taek Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3506-3513
    • /
    • 2023
  • In this paper, we demonstrate the neutron attenuation of dry cask shielding materials using the S670e helium-4 detector manufactured by Arktis Radiation Ltd. In particular, two materials expected to be applied to the TN-32 dry cask manufactured by ORANO Korea and KORAD-21 by the Korea Radioactive Waste Agency (KORAD) were utilized. The measured neutron attenuation was compared with our Monte Carlo N-Particle Transport simulation results, and the difference is given as the root mean square (RMS). For the fast neutron case, a rapid decline in neutron counts was observed as a function of increasing material thickness, exhibiting an exponential relationship. The discrepancy between the experimentally acquired data and simulation results for the fast neutron was maintained within a 2.3% RMS. In contrast, the observed thermal neutron count demonstrated an initial rise, attained a maximum value, and exhibited an exponential decline as a function of increasing thickness. In particular, the discrepancy between the measured and simulated peak locations for thermal neutrons displayed an RMS deviation of approximately 17.3-22.4%. Finally, the results suggest that a minimum thickness of 5 cm for Li-6 is necessary to achieve a sufficiently significant cross-section, effectively capturing incoming thermal neutrons within the dry cask.

10-GHz band 2 × 2 phased-array radio frequency receiver with 8-bit linear phase control and 15-dB gain control range using 65-nm complementary metal-oxide-semiconductor technology

  • Seon-Ho Han;Bon-Tae Koo
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.708-715
    • /
    • 2024
  • We propose a 10-GHz 2 × 2 phased-array radio frequency (RF) receiver with an 8-bit linear phase and 15-dB gain control range using 65-nm complementary metal-oxide-semiconductor technology. An 8 × 8 phased-array receiver module is implemented using 16 2 × 2 RF phased-array integrated circuits. The receiver chip has four single-to-differential low-noise amplifier and gain-controlled phase-shifter (GCPS) channels, four channel combiners, and a 50-Ω driver. Using a novel complementary bias technique in a phase-shifting core circuit and an equivalent resistance-controlled resistor-inductor-capacitor load, the GCPS based on vector-sum structure increases the phase resolution with weighting-factor controllability, enabling the vector-sum phase-shifting circuit to require a low current and small area due to its small 1.2-V supply. The 2 × 2 phased-array RF receiver chip has a power gain of 21 dB per channel and a 5.7-dB maximum single-channel noise-figure gain. The chip shows 8-bit phase states with a 2.39° root mean-square (RMS) phase error and a 0.4-dB RMS gain error with a 15-dB gain control range for a 2.5° RMS phase error over the 10 to10.5-GHz band.