• Title/Summary/Keyword: Root inoculation

Search Result 298, Processing Time 0.027 seconds

Effects of Beneficial Microorganisms and Mycorrhizal Fungus Colonized Rhizoplane on the Suppression of Root Rot Pathogen, Fusarium solani (근면 정착 유용 미생물과 균근균이 근부병원균, Fusarium solani의 발병억제에 미치는 영향)

  • Han, Ki-Don;Lee, Sang-Sun;Kim, Sung-Ho;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.24 no.1 s.76
    • /
    • pp.38-48
    • /
    • 1996
  • The survival or colonization of beneficial organsisms and suppression of root rot of ginseng (Panax ginseng) by two distinct bacteria, Pseudomonas cepacia, Bacillus cereus and three mycorrhiza in pot soil were investigated and compared with uninoculated root. In separate inoculation, colonization of roots by P. cepacia was maintained at 6.25 (log cfu/g root) during growth for 10 days under pot culture conditions comparing to $5.62{\sim}6.19$ by mixed treatment with other organisms. Colonizations of P. cepacia were gradually decreased from 6.25 (log cfu/g root) in 10 days growth to 3.01 (log cfu/g root) in 270 days incubation period. This reduction was also investgated in combination treatments by B. cereus or F. solani. The numbers of Fusarium spp. were colonized high number in rhizosphere soil from 3.33 to 3.67 (log cfu/g root) in control within $10{\sim}60$days after treatment of pathogen F. solani, but it's numbers were markedly decreased in 270 days cultivation of plant from 3.33 to 1.02 (log cfu/g root) after treatment. In treatment of beneficial strains of P. cepacia and B. cereus, P. cepacia significantly suppressed the development of root rot from 4.3 in control to 1.2 in treatment, whereas B. cereus alone had no effect on the rate of disease suppression. The disease index $(1.8{\sim}2.3)$ in combination of two bacteria was reduced in plants inoculated with both P. cepacia and B. cereus comparing to the index (4.3) of control. As an effect of inoculation with mycorrhiza on disease suppression, suppression of root rot by F. solani was reduced to $1.2{\sim}1.6$ in disease index in treatment of Glomus albidum and Acaulospora longular comparing to 4.3 of control. In the treatment of bacterial strain P. cepacia and mycorrhizal fungus Glomus albidum, the disease suppression was apparent to 1.2 and 1.2 comparing to 4.3 of control in disease index respectively.

  • PDF

Solid Culture of Phosphate-solubilizing Fungus, Penicillium sp. PS-113 (인산가용화 사상균 Penicillium sp. PS-113의 고체배양)

  • Kang, Sun-Chul;Choi, Myoung-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • A fungus, Penicillium sp. PS-113, isolated from soil showed the high phosphate-solubilizing activity in patato dextrose broth-rock phosphate to produce free phosphates to the culture broth with the concentrations of 585 ppm against rock phosphate. In this medium, the optimum temperature and initial pH to solubilize rock phosphate were 30$^{\circ}C$ and pH 7.5, respectively. In order to make the mass production of the conidia from this fungus, we cultured in on various solid-based media like barley, corn, wheat, rice, rice bran, and compost. As a result, the fungus highly produced conidia ranging from 2.1 to $5.1{\times}10_9$ conidia/g${\cdot}$media on these solid media except compost-based medium, which was 0 times less than others. Effects of inoculation of the phosphate solubilizing fungus as a biofertilizer were studied in perlite-based pot cropped with Zea mays Suwon 19. Inoculation of Penicillium sp. PS-113 increased in plant height (1.4 times), plant weight (5.2~8.1 times) and root length (1.1~1.2 times) at 60-day cultivation, compared to Hogland solution either without $NH_4H_2PO_4$ or displace $NH_4H_2PO_4$ to powdered rock phosphate, a phosphorus source for plant growth.

  • PDF

Occurrence of Dry Rot on Cymbidium Orchids Caused by Fusarium spry. in Korea

  • Kim, Wan-Gyu;Lee, Byung-Dae;Cho, Weong-Dae;Sung, Jae-Mo
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.156-160
    • /
    • 2002
  • Cymbidium orchids with blight and rot symptoms were collected, and a total of 63 isolates of Fusarium app. was obtained from pseudobulbs, roots, and leaves of the diseased plants. The isolates were identified based on their morphological characteristics. Out of the 63 isolates of Fusatium sup., 51 isolates were identified as F. oxysporum, 10 isolates as F. solani, and the rest as F. proliferatum. F. oxysporum was isolated from all the Cymbidium spp., while F. solani and F. proliferatum were isolated only from Cymbidium ensifolium and C. ginatum, respectively. Isolates of the three Fusarium spp. were tested for pathogenicity to their hosts by artificial inoculation. The strongly pathogenic isolates of Fusarium spp. induced severe dry rot of pseudobulbs and roots of the host plants. The symptoms progressed up to the basal part of the leaves, which later caused blight of the entire plant. The dry root symptoms induced on the plants by artificial inoculation with the isolates of Fusarium app. were similar to those observed in the growers'greenhouses. This is the first report of dry rot of Cymbidium spp. caused by F. oxysporum, F. solani, and F. proliferatum in Korea.

Two Arbuscular Mycorrhizal Fungi Alleviates Drought Stress and Improves Plant Growth in Cinnamomum migao Seedlings

  • Liao, Xiaofeng;Chen, Jingzhong;Guan, Ruiting;Liu, Jiming;Sun, Qinwen
    • Mycobiology
    • /
    • v.49 no.4
    • /
    • pp.396-405
    • /
    • 2021
  • Cinnamomum migao plants often face different degrees of drought in karst habitats, which can lead to plants' death, especially in the seedling stage. Widespread of arbuscular mycorrhizal (AM) fungi in karst soils have the potential to address this drought, which is a threat to C. migao seedlings. We inoculated C. migao seedlings with spores from Glomus lamellosum and Glomus etunicatum, two AM fungi widely distributed in karst soils, to observe seedling growth response after simulated drought. Our results showed that 40 g of G. lamellosum and G. etunicatum significantly promoted the growth of C. migao seedlings, 120 days after inoculation. Following a 15-day drought treatment, root colonization of the seedlings with G. lamellosum or G. etunicatum had lower the accumulation of malondialdehyde (MDA) and increased the accumulation of enzymes and osmotic substances in the seedlings. The relative water content in different organs (roots, stems, and leaves) of the drought-stressed seedlings was higher in plants with G. lamellosum or G. etunicatum than in plants without AM fungi colonization. Our results showed that inoculation with AM fungi was an effective means to improve the drought resistance of C. migao seedlings.

Different Mechanisms of Induced Systemic Resistance and Systemic Acquired Resistance Against Colletotrichum orbiculare on the Leaves of Cucumber Plants

  • Jeun, Yong-Chull;Park, Kyung-Seok;Kim, Choong-Hoe
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • Defense mechanisms against anthracnose disease caused by Colletotrichum orbiculare on the leaf surface of cucumber plants after pre-treatment with plant growth promoting rhizobacteria(PGPR), amino salicylic acid(ASA) or C. orbiculare were compared using a fluorescence microscope. Induced systemic resistance was mediated by the pre-inoculation in the root system with PGPR strain Bacillus amylolquefaciens EXTN-1 that showed direct antifungal activity to C. gloeosporioides and C. orbiculare. Also, systemic acquired resistance was triggered by the pre-treatments on the bottom leaves with amino salicylic acid or conidial suspension of C. orbiculare. The protection values on the leaves expressing SAR were higher compared to those expressing ISR. After pre-inoculation with PGPR strains no change of the plants was found in phenotype, while necrosis or hypersensitive reaction(HR) was observed on the leaves of plants pre-treated with ASA or the pathogen. After challenge inoculation, inhibition of fungal growth was observed on the leaves expressing both ISR and SAR. HR was frequently observed at the penetration sites of both resistance-expressing leaves. Appressorium formation was dramatically reduced on the leaves of plants pre-treated with ASA, whereas EXTN-1 did not suppress the appressorium formation. ASA also more strongly inhibited the conidial germination than EXTN-1. Conversely, EXTN-1 significantly increased the frequency of callose formation at the penetration sites, but ASA did not. The defense mechanisms induced by C. orbiculare were similar to those by ASA. Based on these results it is suggested that resistance mechanisms on the leaf surface was different between on the cucumber leaves expressing ISR and SAR, resulting in the different protection values.

  • PDF

Occurrence of Phytophthora Rot of Strawberry Caused by Phytophthora nicotianae var. nicotianae (Phytophthora nicotianae var. nocotianae에 의한 딸기 역병의 발생)

  • 송주희;노성환;하주희;정연화;문병주
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.445-451
    • /
    • 1998
  • A severe Phytophthora rot of strawberry caused by a species of Phytophthora has been widely occurred at major cultivation areas of Kimhae on August in 1997. Incidence of the disease was obtained in the range of 69.2~83.6% in surveyed 4 fields and showed an average of 75.2%. A species of Phytophthora was mostly isolated from the crown of infected strawberry plants and all the isolates were identified as P. nicotianae var. nicotianae (=P. parasitica). The fungus showed strong pathogenicity on strawberry by inoculation test. As a result of the leaf inoculation using mycelial disks of the fungus, both leaves and petioles were darkly browned, and were finally blighted. As a result of the root inoculation of zoospore suspension, both roots and crowns were rotten with dark brown. Although the fungus produced sporangia either on V-8 juice agar medium or liquid medium, the sporangia observed on the liquid medium appeared to be broadly turbinate and noncaducous. Moreover the fungus cultured on the liquid medium often produced sporangia having two papilla. The number of zoospores in sporangia was found to be ranged from 3 or 4 to as many as 20 or 25. In addition, the released zoospore from the sporangium became the cystospore during the prolonged culture of the fungus. The sporangia were measured as av. 49$\times$35 ${\mu}{\textrm}{m}$ with l/b ratio of 1.43. All isolates from crowns were heterothallic and A1 mating type since oospores were abundantly formed on clarified V-8 juice agar by dual culture with P. capsici A2 mating type. Aplerotic oospores were sized 24-26 ${\mu}{\textrm}{m}$. Antheridia were always amphigynous and recoreded an average of 12$\times$10 ${\mu}{\textrm}{m}$. Hyphal swlling were easily observed, and terminal or intercalary chlamydospores were abundantly formed on V-8 juice agar as well as in C/Z solution and sized av. 28.2 ${\mu}{\textrm}{m}$. This is the first report of Phytophthora rot of strawberry in Korea.

  • PDF

Studies on the Root Nodule Formation of Several Leading Soybean Varieties (주요대두품종의 근류형 성성에 관한 연구)

  • Chang-Yeol Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.2
    • /
    • pp.75-81
    • /
    • 1979
  • 15 soybean cultivars were tested with the sandculture to investigate the affinity of cultivars to the nodule bacteria, Rhyzobium Japonicum #23, and the effects of inoculation on the vegetative growth of cultivars. The amount of nodule formation until the flowering stage was significantly different among the cultivars. The cultivar Haman showed the best nodule formation of 122.2 nodules per plant, while the cultivar Busuk showed the least amount of nodule formation. The inoculation of the nodule bacteria resulted in an increased plant growth and especially the chlorophyll content was significantly improved by inoculation of the nodule bacteria.

  • PDF

Effects of Bacillus spp. On Growth of Alfalfa ( Medicago sativa L. ) (Bacillus속이 Alfalfa ( Medicago sativa L. ) 의 생장에 미치는 영향)

  • Choi, Ki-Chun;Youn, Chang;Chun, Woo-Bock
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.239-248
    • /
    • 1997
  • This study was conducted to investigate the effects of antagonistic microorganisms, Bacillus spp., on growth of alfalfa(Medicag0 sativa L.) in repeated cultivation soil(RCS) and unrepeated cultivation soil(URCS). Alfalfa was established by seeding into pots 12 cm in diameter and 9 cm in depth containing 1 : 1 mixture of soil and vermiculite with antagonistic bacteria and pathogenic fungi. The growth experiment of alfalfa was conducted in pots in a vinyl house. The bacteria used in this study were Bacillus subtilis and hsants. B. subtilis was isolated and identified 60m forage rhizosphere soil and hsants isolated through cell fusion fiom B. subtilis 101 and B. thuringiensis. B. subtilis was named B. subtilis 101 and hsants named F -3 and F -8. From dark culture experimenf alfalfa was longer lived in treated soil with antagonistic bacteria than that in non-treated soil, and longer lived in URCS than that in RCS. However, alfalfa was shorter lived in RCS and URCS than that in autoclaved RCS. The number of leaves of alfalfa were positively affected by the inoculation of the antagonistic bacteria in both RCS and URCS. Dry weight of shoot and root was increased by the inoculation of the antagonistic bacteria(P< 0.05). However, the growth of alfalfa was decreased by the inoculation of the pathogenic hngi both RCS apd URCS.

  • PDF

The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity

  • Tian, Lei;Shi, Shaohua;Ma, Lina;Zhou, Xue;Luo, Shasha;Zhang, Jianfeng;Lu, Baohui;Tian, Chunjie
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Background: Glomus intraradices is a species of arbuscular mycorrhizal fungi that, as an obligate endomycorrhiza, can form mutually beneficial associations with plants. Panax ginseng is a popular traditional Chinese medicine; however, problems associated with ginseng planting, such as pesticide residues, reduce the ginseng quality. Methods: In this experiment, we studied the effect of inoculating G. intraradices on several physiological properties and microbial communities of ginseng. UV-Visible Spectrum method was used to detect physical properties. Denaturing gradient gel electrophoresis method was used to analyze microbial communities. Results: The results indicated that inoculation with G. intraradices can improve the colonization rate of lateral ginseng roots, increase the levels of monomeric and total ginsenosides, and improve root activity as well as polyphenol oxidase and catalase activities. We also studied the bacterial and fungal communities in ginseng rhizospheric soil. In our study, G. intraradices inoculation improved the abundance and Shannon diversity of bacteria, whereas fungi showed a reciprocal effect. Furthermore, we found that G. intraradices inoculation might increase some beneficial bacterial species and decreased pathogenic fungi in rhizospheric soil of ginseng. Conclusion: Our results showed that G. intraradices can benefit ginseng planting which may have some instructive and practical significance for planting ginseng in farmland.

Transgenic cucumber expressing the 54-kDa gene of Cucumber fruit mottle mosaic virus is highly resistance and protect non-transgenic scions from soil infection

  • Gal-On, A.;Wolf, D.;Antignus, Y.;Patlis, L.;Ryu, K.H.;Min, B.E.;Pearlsman, M.;Lachman, O.;Gaba, V.;Wang, Y.;Yang. J.;Zelcer, A.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.148.2-149
    • /
    • 2003
  • Cucumber fruit mottle mosaic tobamovirus (CFMMV) causes severe mosaic symptoms with yellow mottling on leaves and fruits, and occasionally severe wilting of cucumber plants. No genetic source of resistance against this virus has been identified. The genes coding for the coat protein or the putative 54-kDa replicase were cloned into binary vectors under control of the SVBV promoter. Agrobacterium-mediated transformation was peformed on cotyledon explants of a parthenocarpic cucumber cultivar with superior competence for transformation. R1 seedlings were evaluated for resistance to CFMMV infection by lack of symptom expression, back inoculation on an alternative host and ELISA. From a total of 14 replicase-containing R1 lines, 8 exhibited immunity, while only 3 resistant lines were found among a total of 9 CP-containing lines. Line 144 homozygous for the 54-kDa replicase was selected for further resistance analysis. Line 144 was immune to CFMMV infection by mechanical and graft inoculation, or by root infection following planting in CFMMV-contaminated soil. Additionally, line 144 showed delay of symptom appearance following infection by other cucurbit-infecting tobamoviruses. Infection of line 144 plants with various potyviruses and cucumber mosaic cucumovirus did not break the resistance to CFMMV. The mechanism of resistance of line 144 appears to be RNA-mediated, however the means is apparently different from the gene silencing phenomenon. Homozygote line 144 cucumber as rootstock demonstrated for the first time protection of a non-transformed scion from soil inoculation with a soil borne pathogen, CFMMV.

  • PDF