• Title/Summary/Keyword: Root Rot

Search Result 432, Processing Time 0.028 seconds

Root Rot of Japanese Angelica Caused by Phytophthora cactorum in Nursery and Mycological Characteristics of the Isolates (두릅나무 묘목생산포의 역병 발생 및 분리균의 균학적 특성)

  • Lee, Sang-Hyun;Lee, Jae-Pil;Kim, Kyung-Hee;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.33 no.2
    • /
    • pp.98-102
    • /
    • 2005
  • In 2003 to 2005, the root rot of Japanese angelica (Aralia elata) was surveyed in nursery beds of Korea, where incidence of the disease often reached up to 100%. Three isolates were obtained from the infected roots, and identified as Phytophthora cactorum on the basis of cultural, morphological characteristics and molecular analysis. The isolates were characterized by having markedly papillate and broadly ovoid deciduous sporangia. The optimum temperature for mycelium growth was at $25^{\circ}C$ on V8 juice agar. Pathogenicity of the isolates was confirmed by soil mixture inoculation. Approximately 900 bp of ITS rDNA was amplified from all 3 isolates and band pattern of restriction fragments observed by Alu I, Msp I, and Taq I digestion also supported the result of the morphological identification when compared with PhytID database.

Soil Environmental Factors Affecting Fusarium Population and Root Rot of Panax ginseng in Ginseng Fields (인삼 재배포장에서 Fusarium 밀도와 근부에 영향을 미치는 토양환경 요인)

  • Ohh Seung Hwan;Chung Young Ryun;Yu Yun Hyun;Lee Il Ho
    • Korean journal of applied entomology
    • /
    • v.21 no.2 s.51
    • /
    • pp.68-72
    • /
    • 1982
  • Soil environmental factors, affecting population of Fusarium spp. and root rot of Panax ginseng were investigated in the ginseng cultivated soil. In the 2-year-old ginseng cultivated soil, the number of Fusarium spp. and the amount of available phosphorus were significantly decreased as clay content was increased in the soil. Also the missing rate of ginseng plants and the amount of nitrate nitrogen appears to be decreased as clay content was increased in the soil, although, it was not statistically significant. In the 6-year-old ginseng cultivated soil, there was highly significant negative correlation(r=-0.3976, p=0.01) between the number of Fusarium spp. and that of Streptomyces spp. Relationship between root rot and the amount of available phosphorus was significantly positive (r=0.3162, p=0.05), however, there was no correlation between the two factors within same soil torture.

  • PDF

Morphological Characteristics of Chlamydospores of Cylindrocarpon destructans Causing Root-rot of Panax ginseng (인삼 뿌리썩음병균 Cylindrocarpon destructans 후막포자의 형태적 특성)

  • Cho, Dae-Hui;Yu, Yun-Hyun;Kim, Young-Ho
    • Journal of Ginseng Research
    • /
    • v.27 no.4
    • /
    • pp.195-201
    • /
    • 2003
  • Chlamydospore formation from mycelia and conidia of Cylindrocarpon destructans isolated from the root rot lesion of the Panax ginseng was investigated by scanning electron and light microscopy. Typical chlamydospores were formed only from hyphae but not from conidia on culture media. However, immature chlamydopspore-like cells were formed from microconidia after 12 days of incubation at 20$^{\circ}C$ on Czapek Dox broth (CDB) adjusted to pH 4.0. Chlamydospores were yellowish or reddish brown in color, and produced singly or in chain with the hyphal intercalary or terminal position on potato-dextrose agar, V-8 juice agar and CDB with no addition of nitrogen sources after 16∼20 days of incubation at 20$^{\circ}C$. They were 11.3 to 11.9 $\mu\textrm{m}$ in diameter, having many lumps-like warts on their surface with the length of 1.5 to 1.8 $\mu\textrm{m}$.

Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus

  • Phung, Manh Hung;Wattanachai, Pongnak;Kasem, Soytong;Poeaim, Supattra
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.288-296
    • /
    • 2015
  • Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of $2.6{\sim}101.4{\mu}g/mL$. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen.

Transcriptome analyses of the ginseng root rot pathogens Cylindrocarpon destructans and Fusarium solani to identify radicicol resistance mechanisms

  • Li, Taiying;Kim, Jin-Hyun;Jung, Boknam;Ji, Sungyeon;Seo, Mun Won;Han, You Kyoung;Lee, Sung Woo;Bae, Yeoung Seuk;Choi, Hong-Gyu;Lee, Seung-Ho;Lee, Jungkwan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.161-167
    • /
    • 2020
  • Background: The ascomycete fungi Cylindrocarpon destructans (Cd) and Fusarium solani (Fs) cause ginseng root rot and significantly reduce the quality and yield of ginseng. Cd produces the secondary metabolite radicicol, which targets the molecular chaperone Hsp90. Fs is resistant to radicicol, whereas other fungal genera associated with ginseng disease are sensitive to it. Radicicol resistance mechanisms have not yet been elucidated. Methods: Transcriptome analyses of Fs and Cd mycelia treated with or without radicicol were conducted using RNA-seq. All of the differentially expressed genes (DEGs) were functionally annotated using the Fusarium graminearum transcript database. In addition, deletions of two transporter genes identified by RNA-seq were created to confirm their contributions to radicicol resistance. Results: Treatment with radicicol resulted in upregulation of chitin synthase and cell wall integrity genes in Fs and upregulation of nicotinamide adenine dinucleotide dehydrogenase and sugar transporter genes in Cd. Genes encoding an ATP-binding cassette transporter, an aflatoxin efflux pump, ammonium permease 1 (mep1), and nitrilase were differentially expressed in both Fs and Cd. Among these four genes, only the ABC transporter was upregulated in both Fs and Cd. The aflatoxin efflux pump and mep1 were upregulated in Cd, but downregulated in Fs, whereas nitrilase was downregulated in both Fs and Cd. Conclusion: The transcriptome analyses suggested radicicol resistance pathways, and deletions of the transporter genes indicated that they contribute to radicicol resistance.

Petiole and Root Rot on Spathiphyllum Caused by Cylindrocladium spathiphylli in Korea (Cylindrocladium spathiphylli에 의한 스파티필럼 뿌리썩음병)

  • Han, Kyung-Sook;Park, Jong-Han;Han, You-Kyoung;Cheong, Seung-Ryong
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.64-67
    • /
    • 2008
  • In 2005 and 2007, petiole and root rot of Spathiphyllum spp. was occurred at commercial greenhouse during summer (June-September) in Koyang city and Yongin city, Kyunggi-do, Korea. The pathogenic fungus was isolated from diseased plants and the cultural and morphological chracteristic were observed. Conidia were rod in shape, 1-3 septa and $67.5-95.0{\times}4.8-6.5\;{\mu}m$ (av. $82.0{\times}6.0\;{\mu}m$) in size. The optimum temperature for the mycelial growth of the isolates was $27^{\circ}C$. According to result the pathogenicity test, first disease symptoms appeared five days after inoculation. On the basis of mycological characteristics and pathogenicity test on host plants, the fungus was identified as Cylindrocladium spathiphylli. This is the first report on Spathiphyllum spp. caused by C spathiphylli in Korea.

Screening of Antagonistic Bacteria for Biological control of Ginseng Root Rot (인삼뿌리썩음병 방제에 유효한 길항미생물의 탐색)

  • Kim, Young-Sook;Lee, Myeong-Seok;Yeom, Ji-Hee;Song, Ja-Gyeong;Lee, In-Kyoung;Yeo, Woon-Hyung;Yun, Bong-Sik
    • The Korean Journal of Mycology
    • /
    • v.40 no.1
    • /
    • pp.44-48
    • /
    • 2012
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herb in Korea. However, yield losses reached up to 30~60 % due to various diseases during 3 or 5 years of ginseng cultivation. Therefore, successful production of ginseng roots depends primarily on the control of diseases. The objective of this study is to select potential multifunctional biocontrol agents from actinomycetes for the control of multiple ginseng diseases as an alternative to fungicides. Ninety three Streptomyces strains were selected and their ability to produce antibiotics, siderophore and lytic enzymes such as protease and cellulose were investigated. Eight of the isolates, strains A75, A501, 515, 523, A704, A1444, A3265 and A3283 produced cellulase and protease. These strains also produced siderophore and showed potent antifungal activity against Botrytis cinerea, Cylindrocarpon destructans, Collectotricum gloeosporioides, Phytophthora capsici and Rhizoctonia solani causing ginseng root rot.

Evaluation of Sesquiterpenoids Content and Growth Characters in Clonal Lines from a Cross between Atractylodes japonica Koidz. ex Kitam. and A. macrocephala Koidz

  • Kim, Kwan-Su;Park, Chun-Geun;Kim, Dong-Hwi;Park, Si-Hyung;Choung, Myoung-Gun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.2
    • /
    • pp.107-112
    • /
    • 2006
  • Two Atractylodes species, A. japonica Koidz. ex Kitam. (AJ) and A. macrocephala Koidz (AM) were used in this study. AJ population had higher amounts of Sesquiterpenoids and stronger tolerance to root rot but less vigor of root growth than AM population. Two populations (AJ and AM) were crossed to make interspecific hybrid population. A total of 98 lines propagated clonally were selected from a cross of AJ and AM, and evaluated for contents of sesquiterpenoids, atractylon (ATLN) and atractylenolide III (AT3) using high performance liquid chromatography (HPLC), and growth characters such as plant height, stem number and root weight. HPLC profiles of the hybrids were compared with those of parent plants, and it demonstrated the production of introgression hybrid by crossing between AJ and AM. Of 98 clonal lines,10 lines were selected by 10% level based on the growth vigor and tolerance to root rot, and AJM2102-51 line showed the heaviest root weight (117.1 g/plant) among them. A total of 98 hybrid lines contained on average $0.16\;{\pm}\;0.10\;mg/g$ of $AT3,\;2.00\;{\pm}\;1.37\;mg/g$ of ATLN, and $2.16\;{\pm}\;1.40\;mg/g$ of total sesquiterpenoids, showing high coefficients of variation (above 65%). Ten lines having high contents of sesquiterpenoids were selected, and AJM2101-15 had the highest amount (9.83 mg/g) of ATLN, and showed 40.8 g/plant of root weight similar to mean value (39.9 g/plant) of hybrid lines. The result showed that the introgression of both characters of vigorous growth from AM and high sesquiterpenoids content from AJ could be possible to make new hybrid lines by crossing between AJ and AM.

Bacterial Microbiome Differences between the Roots of Diseased and Healthy Chinese Hickory (Carya cathayensis) Trees

  • Xiao-Hui Bai;Qi Yao;Genshan Li;Guan-Xiu Guan;Yan Fan;Xiufeng Cao;Hong-Guang Ma;Mei-Man Zhang;Lishan Fang;Aijuan Hong;Dacai Zhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1299-1308
    • /
    • 2023
  • Carya cathayensis is an important economic nut tree that is endemic to eastern China. As such, outbreaks of root rot disease in C. cathayensis result in reduced yields and serious economic losses. Moreover, while soil bacterial communities play a crucial role in plant health and are associated with plant disease outbreaks, their diversity and composition in C. cathayensis are not clearly understood. In this study, Proteobacteria, Acidobacteria, and Actinobacteria were found to be the most dominant bacterial communities (accounting for approximately 80.32% of the total) in the root tissue, rhizosphere soil, and bulk soil of healthy C. cathayensis specimens. Further analysis revealed the abundance of genera belonging to Proteobacteria, namely, Acidibacter, Bradyrhizobium, Paraburkholderia, Sphaerotilus, and Steroidobacter, was higher in the root tissues of healthy C. cathayensis specimens than in those of diseased and dead trees. In addition, the abundance of four genera belonging to Actinobacteria, namely, Actinoallomurus, Actinomadura, Actinocrinis, and Gaiella, was significantly higher in the root tissues of healthy C. cathayensis specimens than in those of diseased and dead trees. Altogether, these results suggest that disruption in the balance of these bacterial communities may be associated with the development of root rot in C. cathayensis, and further, our study provides theoretical guidance for the isolation and control of pathogens and diseases related to this important tree species.

Stem Rot of Kalanchoe Caused by Phytophthora nicotianae (Phytophthora micotianae 에 의한 칼랑코에 역병)

  • 한경숙;이중섭;지형진
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.8-10
    • /
    • 2001
  • A stem and root rot disease of kalanchoe (Kalanchoe sp.) which is a succulent plant that provides consumers with a durable flowering pot was found in Koyang, Kyounggi province, Korea in May 1998. We found that stems and roots of potted kalanchoe had dark brown spots at the soil level. The causal organism was identified as Pjytophtora nicotianae on the basis of mycological characteristics. The fungus produced markedly papillate, ovoid to spherical sporangia, and abundant chlamydospores. Sporangia were 20∼48$\times$24∼64㎛(avg. 35.0$\times$47.3㎛) in size, and optimum temperature for the mycelial growth of the isolate was 30$\^{C}$. The fungus showed relatively different pathogenicity to 14 kalanchoe cultivars including K. blossfelana cv. Florus. cultivars florsu, calypso, Maya, and Redsing were susceptible to thedisease in root dip inoculation. This is the first report demonstrating the stem rot on kalanchoe caused by P. nicotianae in Korea.

  • PDF