• Title/Summary/Keyword: Root Rot

Search Result 432, Processing Time 0.027 seconds

Root and Basal Stem Rot of Moth Orchid (Phalaenopsis spp.), Pung-nan (Neofinetia falcata) and Nadopung-nan (Aerides japonicum) Caused by Fusarium spp. (Fusarium spp.에 의한 호접란과 풍란류에 발생하는 뿌리 및 줄기기부썩음병)

  • Kim, Jin-Won;Chun, Se-Chul
    • Research in Plant Disease
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2007
  • Root and basal stem rot disease occurred on moth orchid (Phalaenopsis spp.), Pung-nan (Neofinetia falcata) and Nadopung-nan (Aerides japonicum) grown in the farmers' greenhouses located in Namyangju Kyonggi province, Korea during 2005 to 2006. Wilting symptoms occurred on these orchard plants at initial stage and the infected plant leaves turned yellow to red. The discolored leaves were fallen down to lead to eventual death of the entire plant. A total of 59 isolates of Fusarium spp. was obtained from roots and leaf bases of the diseased plants. The cultural and morphological characteristics of isolated Fusairum spp. were identified as Fusarium oxysporum, F. proliferatum and F. solani. F. oxysporum and F. proliferatum were isolated from all these orchard plants but F. solani was isolated only from Phalaenopsis spp. Pathogenicity of the three Fusarium spp. was confirmed by artificial inoculation. Although F. oxysporum, F. proliferatum and F. solani cusing root rot disease in Phalaenopsis spp. have been reported in Korea, the pathogens in N. falcata and A. japonicum were not reported yet. Therefore, this is the first report on the root and stem rot of N. falcata and A. japonicum caused by F. oxysporum and F. proliferatum in Korea.

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

Variability of Stem-Base Infestation and Coexistence of Fusarium spp. Causing Crown Rot of Winter Wheat in Serbia

  • Jevtic, Radivoje;Stosic, Nemanja;Zupunski, Vesna;Lalosevic, Mirjana;Orbovic, Branka
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.553-563
    • /
    • 2019
  • Investigations related with factors influencing root and crown rot are rare and mainly related to farming practice and soil management. The main objective of this study was to examine broader range of factors influencing stem-base infestation of winter wheat in the field conditions. The effect of spatial distribution of infected plants on disease index (DIs) assessments was also investigated. Analysis of factors influencing DIs of crown rot of wheat demonstrated significant influence of the growing seasons (P < 0.001) and extreme fluctuations in winter temperatures (P < 0.001). In addition to that, localities together with their interaction with the growing season also significantly influenced DIs (P < 0.001). Aggregation of infected plants influenced variability of DI estimations, and it was pointed out that more extensive investigation should be conducted on broad range of DI in order to establish sampling method giving uniform sampling precision. Fusarium graminearum was shown to be predominant Fusarium species in Serbia (72.6%) using sequence-characterized amplified region analysis. Interestingly F. oxysporum was isolated in higher frequencies (27.4%) than it was reported in the literature. Given that there were no reports on the diversity of Fusarium species causing crown rot of wheat in Serbia, this study presents first report on this important subject. It also indicated that more attention should be focused on combined effects of abiotic and biotic factors influencing stem-base infestation of winter wheat. This knowledge will contribute to better understanding of factors influencing root and crown rot of wheat which would ensure sustainable disease management in the future.

Enhancement of seed germination and microbial disinfection on ginseng by cold plasma treatment

  • Lee, Younmi;Lee, Young Yoon;Kim, Young Soo;Balaraju, Kotnala;Mok, Young Sun;Yoo, Suk Jae;Jeon, Yongho
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.519-526
    • /
    • 2021
  • Background: This study aimed to investigate the effect of cold plasma treatment on the improvement of seed germination and surface sterilization of ginseng seeds. Methods: Dehisced ginseng (Panax ginseng) seeds were exposed to dielectric barrier discharge (DBD) plasma operated in argon (Ar) or an argon/oxygen mixture (Ar/O2), and the resulting germination and surface sterilization were compared with those of an untreated control group. Bacterial and fungal detection assays were performed for plasma-treated ginseng seeds after serial dilution of surface-washed suspensions. The microbial colonies (fungi and bacteria) were classified according to their phenotypical morphologies and identified by molecular analysis. Furthermore, the effect of cold plasma treatment on the in vitro antifungal activity and suppression of Cylindrocarpon destructans in 4-year-old ginseng root discs was investigated. Results: Seeds treated with plasma in Ar or Ar/O2 exhibited a higher germination rate (%) compared with the untreated controls. Furthermore, the plasma treatment exhibited bactericidal and fungicidal effects on the seed surface, and the latter effect was stronger than the former. In addition, plasma treatment exhibited in vitro antifungal activity against C. destructans and reduced the disease severity (%) of root rot in 4-year-old ginseng root discs. The results demonstrate the stimulatory effect of plasma treatment on seed germination, surface sterilization, and root rot disease suppression in ginseng. Conclusion: The results of this study indicate that the cold plasma treatment can suppress the microbial community on the seed surface root rot in ginseng.

Characterization and Pathogenicity of Lasiodiplodia theobromae Causing Black Root Rot and Identification of Novel Sources of Resistance in Mulberry Collections

  • Gnanesh, Belaghihalli N.;Arunakumar, Gondi S.;Tejaswi, Avuthu;Supriya, M.;Manojkumar, Haniyambadi B.;Devi, Suvala Shalini
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.272-286
    • /
    • 2022
  • Black root rot (BRR) caused by Lasiodiplodia theobromae is an alarming disease of mulberry that causes tremendous economic losses to sericulture farmers in India and China. Successful control of this disease can be attained by screening germplasm and identifying resistant sources. Seventy four diseased root samples were collected from farmer's fields belonging to four major mulberry growing states of South India. Based on morpho-cultural and scanning electron microscopy studies, 57 fungal isolates were characterized and identified as L. theobromae. Phylogenetic analysis of concatenated internal transcribed spacer and β-tubulin sequences revealed variation of the representative 20 isolates of L. theobromae. Following the root dip method of inoculation, pathogenicity studies on susceptible mulberry genotypes (Victory-1 and Thailand male) recognized the virulent isolate MRR-142. Accordingly, MRR-142 isolate was used to evaluate resistance on a set of 45 diverse mulberry accessions. In the repeated experiments, the mulberry accession ME-0168 which is an Indonesian origin belonging to Morus latifolia was found to be highly resistant consistently against BRR. Eight accessions (G2, ME-0006, ME-0011, ME-0093, MI-0006, MI-0291, MI-0489, and MI-0501) were found to be resistant. These promising resistant resources may be exploited in mulberry breeding for developing BRR resistant varieties and to develop mapping populations which successively helps in the identification of molecular markers associated with BRR.

Biocontrol of root diseases of fruit trees with fungal viruses

  • Matsumoto, Naoyuki;Nakamura, Hitoshi;Ikeda, Kenichi;Arakawa, Masao;Uetake, Yukari
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.19-20
    • /
    • 2003
  • Helicobasidium mompa Tanaka and Resellinia necatrix Prillieux cause violet root rot and white root rot of various crops, respectively. Intensive cultural practices, such as the use of dwarf stock, glasshouse cultivation, etc., predispose plants to the diseases. The diseases can be controlled only by biennial drench of 50100L of chemicals for each tree. Biocontrol with soil microorganisms proved ineffective under field conditions. Long-term control may be hampered by the perennial growth of hosts and by the difficulty in the establishment of antagonists in soil. Crop rotation or soil amendment is not applicable, either. Fungal viruses with dsRNA genome (Buck 1986) are promising against root diseases of fruit trees since they exist within the cytoplasm of fungal hyphae and need no effort to help them persist in the field. The viruses are considered to spread though the network of fungal mycelia in the soil once they enter the fungal cytoplasm. Here, we present preliminary results from a project to control the root diseases of fruit trees with dsRNA.(중략)

  • PDF

Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment

  • Akamatsu, Hajime;Kato, Masayasu;Ochi, Sunao;Mimuro, Genki;Matsuoka, Jun-ichi;Takahashi, Mami
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.219-233
    • /
    • 2019
  • Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.