• Title/Summary/Keyword: Root Mean Square-SD

Search Result 31, Processing Time 0.033 seconds

Calculation of the Least Significant Change Value of Bone Densitometry Using a Dual-Energy X-ray Absorptiometry System

  • Han-Kyung Seo;Do-Cheol Choi;Cheol-Min Shim;Jin-Hyeong Jo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.95-98
    • /
    • 2023
  • Purpose: The precision error of a bone density meter reflects the equipment and reproducibility of results by an examiner. Precision error values can be expressed as coefficient of variation (CV), CV%, and root mean square-SD (RMS-SD). The International Society for Clinical Densitometry (ISCD) currently recommends using RMS-SD as the precision error value. When a 95% confidence interval is applied, the least significant change (LSC) value is calculated by multiplying the precision error value by 2.77. Exceeding the LSC value reflects a significant difference in measured bone density. Therefore, the LSC value of a bone density equipment is an essential factor for accurately determining a patient's bone density. Accordingly, we aimed to calculate the LSC value of a bone density meter (Lunar iDXA, GE) and compare it with the value recommended by the ISCD. We also assessed whether the value measured by the iDXA equipment was below the LSC value recommended by ISCD. Material and Methods: The bone densities of the lumbar spine and thighs of 30 participants were measured twice, and the LSC values were calculated using the precision calculation tool provided by the ISCD (http://www.iscd.org). To check the reproducibility of the measurement, patients were asked to completely dismount from the equipment after the first measurement; the patient was then repositioned before proceeding with the second measurement. Results: The LSC values derived using the CV% values recommended by the ISCD were 5.3% for the lumbar spine and 5.0% for the thigh. The LSC values measured using our bone density equipment were 2.47% for the lumbar spine and 1.61% for the thigh. The LSC value using RMS-SD was 0.031 g/cm2 for the lumbar spine and 0.017 g/cm2 for the thigh. Conclusion: that the findings confirm that the CV% value measured using our bone density meter and the LSC value using RMS-SD were maintained very stably. This can be helpful for obtaining accurate measurements during bone density follow-up examinations.

Prediction of Barge Ship Roll Response Amplitude Operator Using Machine Learning Techniques

  • Lim, Jae Hwan;Jo, Hyo Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, the increasing importance of artificial intelligence (AI) technology has led to its increased use in various fields in the shipbuilding and marine industries. For example, typical scenarios for AI include production management, analyses of ships on a voyage, and motion prediction. Therefore, this study was conducted to predict a response amplitude operator (RAO) through AI technology. It used a neural network based on one of the types of AI methods. The data used in the neural network consisted of the properties of the vessel and RAO values, based on simulating the in-house code. The learning model consisted of an input layer, hidden layer, and output layer. The input layer comprised eight neurons, the hidden layer comprised the variables, and the output layer comprised 20 neurons. The RAO predicted with the neural network and an RAO created with the in-house code were compared. The accuracy was assessed and reviewed based on the root mean square error (RMSE), standard deviation (SD), random number change, correlation coefficient, and scatter plot. Finally, the optimal model was selected, and the conclusion was drawn. The ultimate goals of this study were to reduce the difficulty in the modeling work required to obtain the RAO, to reduce the difficulty in using commercial tools, and to enable an assessment of the stability of medium/small vessels in waves.

Assessing the EORTC QLQ-BM22 Module Using Rasch Modeling and Confirmatory Factor Analysis across Countries: a Comprehensive Psychometric Evaluation in Patients with Bone Metastases

  • Lin, Chung-Ying;Pakpour, Amir H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1405-1410
    • /
    • 2016
  • Background: The European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Bone Metastases Module (EORTC QLQ-BM22) is a recently designed supplement to EORTC Quality of Life Questionnaire-C30 (EORTC QLQ-C30). Additional psychometric properties, especially using confirmatory factor analysis (CFA) and the Rasch model, are warranted. Materials and Methods: A total of 573 patients with bone metastases were enrolled from eight countries with a mean${\pm}$SD age of $55.8{\pm}13.7years$. Slightly more than two thirds of them were female (n=383; 66.8%). CFA was used to examine the BM22 framework; Rasch models were applied to understand misfit items and differential item functioning (DIF). Results: The fit indices were satisfactory in CFA (comparative fit index=0.972, Tucker-Lewis index=0.964, root mean square error of approximation=0.076, and standardized root mean square residual=0.045). All items fit well in the Rasch models (mean square values were between 0.5 and 1.5), and only one item (number 17) displayed DIF across gender. However, there were six DIF items across Canada and Taiwan, ten across Canada and Iran, and six across Taiwan and Iran. Conclusions: The BM22 has satisfactory psychometric properties, and could assess the QoL of patients with bone metastases specifically focusing on their symptoms. Clinicians may want to use it to capture the underlying QoL for patients with bone metastases. However, the score of item 17 should be interpreted with caution when comparing male and female patients. In addition, researchers should note that variation in DIF items may occur when conducting an international study.

The Effect of a Target Controlled Infusion of Low-Concentration Ketamine on the Heart Rate Variability of Normal Volunteers (정상인 자원자에서 목표농도조절주입법으로 투여한 저농도의 케타민이 심장박동수변이도에 미치는 영향)

  • Jung, Jai Yun;Lee, Jun Ho;Lee, Jeong Seok;Kim, Yong Ik
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.39-46
    • /
    • 2009
  • Background: Ketamine has an indirect sympathetic stimulation effect. We investigated heart rate variability (HRV) as a marker of cardiac autonomic function after a target controlled infusion (TCI) of ketamine with a plasma concentration of 30 or 60 ng/ml. Methods: In 20 adult volunteers, the mean of the R wave to the adjacent R wave interval (RRI), the range of RRI, the root mean square successive difference of intervals (RMSSD), the total power, the low frequency (LF, 0.04-0.15 Hz) power, the high frequency (HF, 0.15-0.4 Hz) power, the normal unit HF (nuHF), the normal unit LF (nuLF), the LF/HF ratio and the SD1 and the SD2 in the Poincare plot were measured before and after a TCI of ketamine. We observed for any psychedelic symptoms or sedation. Results: There were no differences in the mean and range of the RRI, RMSSD, total power, LF power, HF power, nuHF, nuLF, LF/HF ratio, SD1 and SD2 between before and after ketamine administration. The OAA/S score was higher and there were more psychedelic symptoms with a 60 ng/ml plasma concentration than with a 30 ng/ml plasma concentration. Conclusions: This study did not show any effect of a low plasma concentration of ketamine on the autonomic nervous system.

Generation of Horizontal Global Irradiance using the Cloud Cover and Sunshine Duration According to the Solar Altitude (일조시간 및 운량을 이용한 태양고도에 따른 수평면 전일사 산출)

  • Lee, Kwan-Ho;Levermore, Geoff J.
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.37-48
    • /
    • 2020
  • This study compares cloud radiation model (CRM) and sunshine fraction radiation model (SFRM) according to the solar altitude using hourly sunshine duration (SD) and cloud cover (CC) data. Solar irradiance measurements are not easy for the expensive measuring equipment and precise measuring technology. The two models with the site fitting and South Korea coefficients have been analyzed for fourteen cities of South Korea during the period (1986-2015) and evaluated using the root mean square error (RMSE) and the mean bias error (MBE). From the comparison of the results, it is found that the SFRM with the site fitting coefficients could be the best method for fourteen locations. It may be concluded that the SFRM models of South Korea coefficients generated in this study may be used reasonably well for calculating the hourly horizontal global irradiance (HGI) at any other location of South Korea.

Effects of Large Display Curvature on Postural Control During Car Racing Computer Game Play (자동차 경주 컴퓨터 게임 시 대형 디스플레이 곡률이 자세 제어에 미치는 영향)

  • Yi, Jihhyeon;Park, Sungryul;Choi, Donghee;Kyung, Gyouhyung
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Display technology has recently made enormous progress. In particular, display companies are competing each other to develop flexible display. Curved display, as a precursor of flexible display, are now used for smart phones and TVs. Curved monitors have been just introduced in the market, and are used for office work or entertainment. The aim of the current study was to investigate whether the curvature of a 42" multi-monitor affects postural control when it is used for entertainment purpose. The current study used two curvature levels (flat and 600mm). Ten college students [mean(SD) age = 20.9 (1.5)] with at least 20/25 visual acuity, and without color blindness and musculoskeletal disorders participated in this study. In a typical VDT environment, each participant played a car racing video game using a steering wheel and pedals for 30 minutes at each curvature level. During the video game, a pressure mat on the seat pan measured the participant's COP (Center of Pressure), and from which four measures (Mean Velocity, Median Power Frequency, Root-Mean-Square Distance, and 95% Confidence Ellipse Area) were derived. A larger AP (Anterior-Posterior) RMS distance was observed in the flat condition, indicating more forward-backward upper body movements. It can be partly due to more variability in visual distance across display, and hence longer ocular accommodation time in the case of the flat display. In addition, a different level of presence or attention between two curvature conditions can lead to such a difference. Any potential effect of such a behavioral change by display curvature on musculoskeletal disorders should be further investigated.

Turkish Version of the Perceived Future Decent Work Securement Scale: Validity and Reliability for Nursing Students

  • Oznur Ispir Demir;Betul Sonmez;Duygu Gul;Sergul Duygulu
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.332-339
    • /
    • 2023
  • Background: The aim of the study was to test the validity and reliability of the Perceived Future Decent Work Securement Scale for Turkish nursing students. Methods: A cross-sectional, methodological study design was used. The study was carried out at three nursing undergraduate programs in Turkey during the academic year of 2020-2021 with 336 senior nursing students. Language validity and content validity analyses were performed for the scale adaptation, followed by confirmatory factor analysis (CFA) for construct validity. The reliability of the scale was determined using the test-retest and Cronbach's alpha internal consistency coefficient. Results: The scale-content validity index score was 0.988. In CFA, all goodness-of-fit indices verified the acceptable fit of the model; its root mean square error of approximation was 0.076; the normed fit index was 0.909; the standardized mean square residual was 0.097; the relative fit index was 0.881; the goodness-of-fit index was 0.915; the adjusted goodness-of-fit index was 0.872 and χ2/df = 2.932. The overall reliability was α = 0.86. The item-total correlations of the scale were above the acceptable level, and the test-retest analysis had a high correlation. The access to healthcare (14.68, SD 3.53) obtained the highest average score, and the adequate compensation (8.52, SD 3.76) was the lowest rated by the senior nursing students. Conclusion: The Perceived Future Decent Work Securement Scale is a valid and reliable scale to assess nursing students' future decent work securement.

Autonomic Nervous System response affected by 3D visual fatigue evoked during watching 3D TV (3D TV 시청으로 유발된 시각피로가 자율신경계 기능에 미치는 영향)

  • Park, Sang-In;Whang, Min-Cheol;Kim, Jong-Wha;Mun, Sung-Chul;Ahn, Sang-Min
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.653-662
    • /
    • 2011
  • As technology in 3D industry has rapidly advanced, a lot of studies primarily focusing on visual function and cognition have become vigorous. However, studies on effect of 3D visual fatigue on autonomic nervous system have not less been conducted. Thus, this study was to identify and determine the effect that might have a negative influence on sympathetic nervous system, parasympathetic nervous system, and cardiovascular system. Fifteen undergraduates (female: 9, mean age: $22.53{\pm}2.55$) participated and were sat on a comfortable chair, viewing a 3D content during about 1 hour. Cardiac responses like SDNN(standard deviation of RR intervals), RMS-SD(root mean squared successive difference), and HF/LF ratios extracted from the measured PPG(Photo-PlethysmoGram) before viewing 3D were compared to those after viewing 3D. The results showed that after subjects watched the 3D, responses in sympathetic nervous system and parasympathetic nervous system were activated and deactivated, respectively relative to those before watching the 3D. The results showed that HF/LF ratio, Ln(LF), and Ln(HF) after viewing 3D were significantly reduced relative to those before viewing 3D. No significant effects were observed in SDNN and RMS-SD. Results obtained in this study showed that visual fatigue induced by watching 3D adversely influenced autonomic nervous system, and thereby reduced heart rate variability causing sympathetic nervous acceleration.

  • PDF

Development of a 3D Roughness Measurement System of Rock Joint Using Laser Type Displacement Meter (레이저 변위계를 이용한 암석 절리면의 3차원 거칠기 측정기 개발)

  • 배기윤;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.268-276
    • /
    • 2002
  • In this study, a 3D coordinate measurement system equipped with a laser displacement meter for digitizing rock joint surface was established and the digitized data were used to calculate several roughness parameters. The parameters used in this study were micro avenge inclination $angle(i_{ave})$, average slope of joint $asperity(SL_{ ave})$, root mean square of $i-angle(i_{rms})$, standard deviation of height(SDH), standard deviation of $i-angle(SD_i)$, roughness profile $index(R_P)$, and fractal dimension(D). The relationships between the roughness parameters based on the digitzation of the surface profile were analyzed. Since the measured value varied according to the degree of reflection and the variation of colors at the measuring point, rock joint surface was painted in white to minimize the influence of the surface conditions. The comparison of the measured values and roughness parameters before and after painting revealed the better consequence from measurement on the painted surfaces. Also, effect of measuring interval was studied. As measured interval was increased, roughness parameters were exponentially decreased. The incremental sequence of degree of decrease was $SDH\; i_{ave},\; i_{rms},\; SD_i,\;and\; R_ p-1$. As a result of comparison of parameters from pin-type measurement system and laser type measurement system, all value of parameters were higher when laser-type measurement system was used, except SDH.

Assessment of Internal Fitness on Resin Crown Fabricated by Digital Light Processing 3D Printer

  • Kang, Wol;Kim, Min-Su;Kim, Won-Gi
    • Journal of dental hygiene science
    • /
    • v.19 no.4
    • /
    • pp.238-244
    • /
    • 2019
  • Background: Recently, three-dimensional (3D) printing has been hailed as a disruptive technology in dentistry. Among 3D printers, a digital light processing (DLP) 3D printer has certain advantages, such as high precision and relatively low cost. Therefore, the latest trend in resin crown manufacturing is the use of DLP 3D printers. However, studies on the internal fitness of such resin crowns are insufficient. The recently introduced 3D evaluation method makes it possible to visually evaluate the error of the desired area. The purpose of this study is to evaluate the internal fitness of resin crowns fabricated a by DLP 3D printer using the 3D evaluation method. Methods: The working model was chosen as the maxillary molar implant model. A total of 20 resin crowns were manufactured by dividing these into two groups. One group was manufactured by subtractive manufacturing system (PMMA), while the other group was manufactured by additive manufacturing system, which uses a DLP 3D printer. Resin crowns data were measured using a 3D evaluation program. Internal fitness was calculated by root mean square (RMS). The RMS was calculated using the Geomagic Verify software, and the mean and standard deviation (SD) were measured. For statistical analysis, IBM SPSS Statistics for Windows ver. 22.0 (IBM Corp., USA) was used. Then, independent t-test was performed between the two groups. Results: The mean±SD of the RMS were 41.51±1.51 and 43.09±2.32 for PMMA and DLP, respectively. There was no statistically significant difference between PMMA and DLP. Conclusion: Evaluation of internal fitness of the resin crown made using a DLP 3D printer and subtractive manufacturing system showed no statistically significant differences, and clinically acceptable results were obtained.