• 제목/요약/키워드: Root Mean Square Error

검색결과 1,236건 처리시간 0.026초

3차원 레이다 궤적 생성 및 성능 분석 (Performance Analysis of Three-Dimensional Radar for Angle and Distance Errors)

  • 임형용;장연수;이태우;황재덕;윤동원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.837-839
    • /
    • 2014
  • 레이다 시스템에서 3차원 궤적 정보는 목표물 추적을 위해 필수적이다. 이때 3차원 레이다는 수신 신호를 통해 방위각, 고각 및 거리를 추정하여 3차원 궤적 정보를 얻게 된다. 수신 신호에 따라 추정된 각도들과 거리는 오차를 가지게 되며 이 오차의 정도에 따라 3차원 레이다 시스템의 성능에 미치는 영향에 대한 분석이 요구되어진다. 본 논문에서는 3차원 레이다 시스템의 각도 및 거리 오차에 따라 추정된 3차원 궤적 정보와 실제 궤적 정보에 대해 RMSE (Root Mean Square Error)를 통해 성능을 분석한다.

  • PDF

Comparison of machine learning algorithms to evaluate strength of concrete with marble powder

  • Sharma, Nitisha;Upadhya, Ankita;Thakur, Mohindra S.;Sihag, Parveen
    • Advances in materials Research
    • /
    • 제11권1호
    • /
    • pp.75-90
    • /
    • 2022
  • In this paper, functionality of soft computing algorithms such as Group method of data handling (GMDH), Random forest (RF), Random tree (RT), Linear regression (LR), M5P, and artificial neural network (ANN) have been looked out to predict the compressive strength of concrete mixed with marble powder. Assessment of result suggests that, the overall performance of ANN based model gives preferable results over the different applied algorithms for the estimate of compressive strength of concrete. The results of coefficient of correlation were maximum in ANN model (0.9139) accompanied through RT with coefficient of correlation (CC) value 0.8241 and minimum root mean square error (RMSE) value of ANN (4.5611) followed by RT with RMSE (5.4246). Similarly, other evaluating parameters like, Willmott's index and Nash-sutcliffe coefficient value of ANN was 0.9458 and 0.7502 followed by RT model (0.8763 and 0.6628). The end result showed that, for both subsets i.e., training and testing subset, ANN has the potential to estimate the compressive strength of concrete. Also, the results of sensitivity suggest that the water-cement ratio has a massive impact in estimating the compressive strength of concrete with marble powder with ANN based model in evaluation with the different parameters for this data set.

Enhancing Medical Images by New Fuzzy Membership Function Median Based Noise Detection and Filtering Technique

  • Elaiyaraja, G.;Kumaratharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2197-2204
    • /
    • 2015
  • In recent years, medical image diagnosis has growing significant momentous in the medicinal field. Brain and lung image of patient are distorted with salt and pepper noise is caused by moving the head and chest during scanning process of patients. Reconstruction of these images is a most significant field of diagnostic evaluation and is produced clearly through techniques such as linear or non-linear filtering. However, restored images are produced with smaller amount of noise reduction in the presence of huge magnitude of salt and pepper noises. To eliminate the high density of salt and pepper noises from the reproduction of images, a new efficient fuzzy based median filtering algorithm with a moderate elapsed time is proposed in this paper. Reproduction image results show enhanced performance for the proposed algorithm over other available noise reduction filtering techniques in terms of peak signal -to -noise ratio (PSNR), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), image enhancement factor (IMF) and structural similarity (SSIM) value when tested on different medical images like magnetic resonance imaging (MRI) and computer tomography (CT) scan brain image and CT scan lung image. The introduced algorithm is switching filter that recognize the noise pixels and then corrects them by using median filter with fuzzy two-sided π- membership function for extracting the local information.

기계학습을 이용한 염화물 확산계수 예측모델 개발 (Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

콘크리트 탄산화 및 열효과에 의한 경년열화 예측을 위한 기계학습 모델의 정확성 검토 (Accuracy Evaluation of Machine Learning Model for Concrete Aging Prediction due to Thermal Effect and Carbonation)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.81-88
    • /
    • 2023
  • Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms-specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms-to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.

경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발 (Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations)

  • 김현수;김유경;이소연;장준수
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.

증발량 산정을 위한 입사태양복사식 비교 (Comparison of incoming solar radiation equations for evaporation estimation)

  • 임창수
    • 농업과학연구
    • /
    • 제38권1호
    • /
    • pp.129-143
    • /
    • 2011
  • In this study, to select the incoming solar radiation equation which is most suitable for the estimation of Penman evaporation, 12 incoming solar radiation equations were selected. The Penman evaporation rates were estimated using 12 selected incoming solar radiation equations, and the estimated Penman evaporation rates were compared with measured pan evaporation rates. The monthly average daily meteorological data measured from 17 meteorological stations (춘천, 강능, 서울, 인천, 수원, 서산, 청주, 대전, 추풍령, 포항, 대구, 전주, 광주, 부산, 목포, 제주, 진주) were used for this study. To evaluate the reliability of estimated evaporation rates, mean absolute bias error(MABE), root mean square error(RMSE), mean percentage error(MPE) and Nash-Sutcliffe equation were applied. The study results indicate that to estimate pan evaporation using Penman evaporation equation, incoming solar radiation equation using meteorological data such as precipitation, minimum air temperature, sunshine duration, possible duration of sunshine, and extraterrestrial radiation are most suitable for 11 study stations out of 17 study stations.

Modeling of Co(II) adsorption by artificial bee colony and genetic algorithm

  • Ozturk, Nurcan;Senturk, Hasan Basri;Gundogdu, Ali;Duran, Celal
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.363-371
    • /
    • 2018
  • In this work, it was investigated the usability of artificial bee colony (ABC) and genetic algorithm (GA) in modeling adsorption of Co(II) onto drinking water treatment sludge (DWTS). DWTS, obtained as inevitable byproduct at the end of drinking water treatment stages, was used as an adsorbent without any physical or chemical pre-treatment in the adsorption experiments. Firstly, DWTS was characterized employing various analytical procedures such as elemental, FT-IR, SEM-EDS, XRD, XRF and TGA/DTA analysis. Then, adsorption experiments were carried out in a batch system and DWTS's Co(II) removal potential was modelled via ABC and GA methods considering the effects of certain experimental parameters (initial pH, contact time, initial Co(II) concentration, DWTS dosage) called as the input parameters. The accuracy of ABC and GA method was determined and these methods were applied to four different functions: quadratic, exponential, linear and power. Some statistical indices (sum square error, root mean square error, mean absolute error, average relative error, and determination coefficient) were used to evaluate the performance of these models. The ABC and GA method with quadratic forms obtained better prediction. As a result, it was shown ABC and GA can be used optimization of the regression function coefficients in modeling adsorption experiments.

Determination and prediction of digestible and metabolizable energy concentrations in byproduct feed ingredients fed to growing pigs

  • Son, Ah Reum;Park, Chan Sol;Kim, Beob Gyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권4호
    • /
    • pp.546-553
    • /
    • 2017
  • Objective: An experiment was conducted to determine digestible energy (DE) and metabolizable energy (ME) of different byproduct feed ingredients fed to growing pigs, and to generate prediction equations for the DE and ME in feed ingredients. Methods: Twelve barrows with an initial mean body weight of 31.8 kg were individually housed in metabolism crates that were equipped with a feeder and a nipple drinker. A $12{\times}10$ incomplete Latin square design was employed with 12 dietary treatments, 10 periods, and 12 animals. A basal diet was prepared to mainly contain the corn and soybean meal (SBM). Eleven additional diets were formulated to contain 30% of each test ingredient. All diets contained the same proportion of corn:SBM ratio at 4.14:1. The difference procedure was used to calculate the DE and ME in experimental ingredients. The in vitro dry matter disappearance for each test ingredient was determined. Results: The DE and ME values in the SBM sources were greater (p<0.05) than those in other ingredients except high-protein distillers dried grains. However, DE and ME values in tapioca distillers dried grains (TDDG) were the lowest (p<0.05). The most suitable regression equations for the DE and ME concentrations (kcal/kg on the dry matter [DM] basis) in the test ingredients were: $DE=5,528-(156{\times}ash)-(32.4{\times}neutral\;detergent\;fiber\;[NDF])$ with root mean square error = 232, $R^2=0.958$, and p<0.001; $ME=5,243-(153 ash)-(30.7{\times}NDF)$ with root mean square error = 277, $R^2=0.936$, and p<0.001. All independent variables are in % on the DM basis. Conclusion: The energy concentrations were greater in the SBM sources and were the least in the TDDG. The ash and NDF concentrations can be used to estimate the energy concentrations in the byproducts from oil-extraction and distillation processes.

잠재요인 모델 기반 영화 추천 시스템 (Movie Recommendation System based on Latent Factor Model)

  • ;김강철
    • 한국전자통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.125-134
    • /
    • 2021
  • 영화 산업의 빠른 발전으로 영화의 제작 수가 급격하게 증가하고 있으며, 영화 추천 시스템은 관객들의 과거 행동이나 영화 후기에 기반하여 관객들의 선호도를 예측하여 영화의 선택에 도움을 주고 있다. 본 논문은 평점의 평균과 편향의 보정을 이용하여 잠재요인 모델에 기반한 영화 추천 시스템을 제안한다. 특이값 분해 방법이 평점 매트릭스 분해에 사용되고, 통계 경사 하강법이 최소자승 손실 함수의 파라미터 최적합에 사용된다. 그리고 평균 제곱근 오차를 사용하여 제안한 시스템 성능을 평가한다. Surprise 패키지를 이용하여 제안한 시스템을 구현 하였으며, 모의실험 결과는 평균 제곱근 오차가 0.671이며, 다른 논문에서 방법에 비하여 좋은 성능을 가진다는 것을 확인하였다.