• 제목/요약/키워드: Room temperatures

검색결과 1,006건 처리시간 0.025초

가열냉각방법에 의한 마그네슘합금의 판재성형성 개선 (Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method)

  • 강대민
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study is to confirm the improvement of formability of AZ31 magnesium alloy sheet by using local heating and cooling technique. For this, the experiments of warm deep drawing were done under the temperatures of $100^{\circ}C\~400^{\circ}C$, and the punch velocity of 10, 100mm/min. Also FE analysis under the temperatures of blankholder and die of $150^{\circ}C,\;225^{\circ}C\;and\;300^{\circ}C$ for tools(holder and die) was executed with considering heat teansfer. From the results, the formability of AZ31 magnesium alloy, espicially the temperatures of $225^{\circ}C\~250^{\circ}C$ for tools(holder and die)improved remarkably. And the experiments and simulations showed that necking under room temperature for tools occured under the part of punch shoulder while at $300^{\circ}C$ for tools, at the part of die shoulder.

열처리 카올린 분말의 알칼리활성화 반응에 미치는 가열온도의 영향 (Effect of the Heating Temperature on the Alkali-activation Reaction of Calcined Kaolin Powder)

  • 김성곤;송태웅
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.601-607
    • /
    • 2012
  • The alkali-activation reaction of two types of typical kaolin calcined at various lower temperatures was investigated at room temperature and at elevated temperatures. For the assessment of the reactivity, the temperature increase and the setting time of pastes prepared with calcined kaolin and sodium/potassium hydroxide solution were measured. Unlike raw kaolin, calcined kaolin samples prepared at various temperature showed an alkali-activation reaction according to the different aspects of the changes in the mineral phases. The reactivity with alkaline solutions was exceedingly activated in the samples calcined at $600-650^{\circ}C$, but the reactivity gradually decreased as the temperature increased in a higher temperature range, most likely due to the changes in the crystal structure of the dehydrated kaolin. The activation effect of the calcination treatment was achieved at reaction temperatures that exceeded $60^{\circ}C$ and was enhanced as the temperature increased. The reactivity of the calcined kaolin with an alkaline solution was more enhanced with the solution of a higher concentration and with a solution prepared from sodium hydroxide rather than potassium hydroxide.

냉간압연된 Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn계 합금의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of a Cold-Rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn System Alloy)

  • 조상현;이성희
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.246-251
    • /
    • 2020
  • The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 ℃ for 1 hour. The specimens annealed at temperatures up to 300 ℃ show a deformation structure; however, from 350 ℃ they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338 MPa after annealing at 400 ℃. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.

통신기지국용 하이브리드 냉방기의 성능특성 연구 (Performance Characteristics of a Hybrid Air-Conditioner for Telecommunication Equipment Rooms)

  • 김용찬;최종민;강훈;윤준상;김영배;최광민;이호성
    • 설비공학논문집
    • /
    • 제18권11호
    • /
    • pp.874-880
    • /
    • 2006
  • The power density and heat dissipation rate per unit area of the telecommunication equipment have been increased with the technology development in the footprint of telecommunication hardware. A proper heat dissipation method from the PCB module is very important to allow reliable operation of its electronic component. In this study, a hybrid air-conditioner for the telecommunication equipment room was designed to save energy and obtain system reliability. For high outdoor temperatures, the hybrid system operates in the vapor compression cycle, while, for low outdoor temperatures, the hybrid system works in the secondary fluid cooling cycle with no operation of the compressor. The performance of the hybrid air-conditioner was measured by varying outdoor and indoor temperatures. The hybrid air-conditioner yielded 50% energy saving compared with the conventional refrigeration system when the mode switch temperature was $8.3^{\circ}C$.

횡충격하중을 받는 빙해선박 구조물의 파단에 관한 연구 (On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads)

  • 민덕기;조상래
    • 대한조선학회논문집
    • /
    • 제49권4호
    • /
    • pp.281-286
    • /
    • 2012
  • Single frame structures with notches were fractured by applying drop impact loadings at room temperature and low temperature. Johnson-Cook shear failure model has been employed to simulate the fractured single frame structures. Through several numerical analyses, material constants for Johnson-Cook shear failure model have been found producing the cracks resulted from experiments. Fracture strain-stress triaxiality curves at both room temperature and low temperature are presented based on the extracted material constants. It is expected that the fracture strain-stress triaxiality curves can offer objective fracture criteria for the assessment of structural fractures of polar class vessel structures fabricated from DH36 steels. The fracture experiments of single frame structures revealed that the structure on low temperature condition fractures at much lower strain than that on room temperature condition despite the same stress states at both temperatures. In conclusion, the material properties on low temperature condition are essential to estimate the fracture characteristics of steel structures operated in the Northern Sea Route.

원자로 압력용기용 강의 고온피로특성에 미치는 응력비의 영향 (Effect of Stress Ration on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516-Grade70 at Higt Temperature.)

  • 박경동;정찬기;김정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1108-1114
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516-Grade 70 steel which is used for pressure vessels was experimentally examined under the condition of at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ration of R=0.1 and 0.3. The fatigue crack propagation rate , da/dN, related with the stress intensity factor range, $\vartriangle$N, was influenced by the stress ration within the stable growth of fatigue crack(Region II) with an increase in $\vartriangle$N. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations revels that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack and oxide-induced by high temperature.

  • PDF

SA516/70 압력용기 강의 저온 피로균열 진전 속도에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/70 Pressure Vessel Steel at Low Temperature)

  • 박경동;김정호;최병국;임만배
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.18-24
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $-60^{\circ}C$,$-80^{\circ}C$ and $-100^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

원형 클래드 판재를 이용한 정사각컵 온간 디프 드로잉성 비교 (Comparision of Warm Deep Drawability of Square Cups Using Circular Clad Sheet Metals)

  • 류호연;김영은;김종호;정완진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.89-93
    • /
    • 2001
  • This study was carried out to investigate the warm deep drawability of square cups of clad sheet metals, by changing temperatures of die and blankholder and blank materials. Two kinds of clad sheet metals, STS304-A1050-STS304 and STS304-A1050-STS430 were chosen for experiments. The relative drawing depth of STS304-A1050-STS304 clad sheet was increased up to 4.4 at $150^{\circ}C$ that was $29\%$ higher than at room temperature, whereas STS304-A1050-STS430 material was improved to 3.65 at $120^{\circ}C$ which was $16\%$ better than at room temperature. In addition, comparison of wall thickness and hardness of a warm drawn cup with those of room temperature showed more even distributions. Therefore, warm forming technique was confirmed to ive better results in deep drawing of stainless clad sheet metal.

  • PDF

Electrochemical properties of PEO-based solid polymer electrolytes blended with different room temperature ionic liquids

  • Kim, Y.H.;Cheruvally, G.;Choi, J.W.;Ahn, J.H.;Kim, K.W.;Ahn, H.J.;Song, C.E.;Choi, D.S.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.276-276
    • /
    • 2006
  • The incorporation of room temperature ionic liquids (IL) in poly (ethyleneoxide)-lithium salt (PEO-LiX) based solid polymer electrolytes is presently being studied as an effective means of enhancing the room temperature ionic conductivity of these electrolytes to acceptable levels for use in lithium batteries. In the present study, $PEO_{20}-LiTFSI$ solid polymer electrolyte was blended with three different ionic liquids, namely 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMIMTFSI), 1-butyl-3-methylimidazolium tetraflouroborate (BMIMBF4) and 1-butyl-3-methylimidazolium trifluromethanesulfonate ($BMIMCF_{3}SO_{3}$). The incorporation of all these ILs resulted in the enhancement of ionic conductivity, the effect being more pronounced at lower temperatures. Electrochemical properties of the blended electrolytes were studied by cyclic voltammetry, linear sweep voltammetry and interfacial resistance measurements. The optimum results were obtained with the blending of BMIMTFSI in the solid polymer electrolyte.

  • PDF

온간성형법에 의한 클래드 강판재의 정사각컵 드로잉성 향상에 관한 연구 (Improvement of Square Cup Drawability of Clad Sheet Metal by Warm Forming Technique)

  • 류호연;김영은;김종호
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.253-260
    • /
    • 2001
  • This study was performed to investigate the optimized warm forming conditions which gave the maximum drawing depth in square cup drawing of clad sheet metals, by changing the temperatures of die and blankholder and also shapes and materials of blanks. Two kinds of clad sheet metals, STS304-A1050-STS304 and STS304-A1050-STS430 were selected for experiments. The relative drawing depth of STS304-A1050-STS304 clad sheet was increased up to 4.4 at $150^{\circ}C$ that was 29% higher than at room temperature, whereas STS304-A1050-STS430 material was improved to 3.9 at $120^{\circ}C$ which was 15% better than at room temperature. In addition, comparison of wall thickness and hardness of a warm drawn cup with those of room temperature showed more even distributions. No separation between each laminated material after drawing occurred through inspection by microscope as well as application of penetrant test and bond strength test. Therefore, warm forming technique was confirmed to give better results in deep drawing of stainless clad sheet metal.

  • PDF