• Title/Summary/Keyword: Rooftop Model

Search Result 45, Processing Time 0.022 seconds

The effects of clouds on enhancing surface solar irradiance (구름에 의한 지표 일사량의 증가)

  • Jung, Yeonjin;Cho, Hi Ku;Kim, Jhoon;Kim, Young Joon;Kim, Yun Mi
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.131-142
    • /
    • 2011
  • Spectral solar irradiances were observed using a visible and UV Multi-Filter Rotating Shadowband Radiometer on the rooftop of the Science Building at Yonsei University, Seoul ($37.57^{\circ}N$, $126.98^{\circ}E$, 86 m) during one year period in 2006. 1-min measurements of global(total) and diffuse solar irradiances over the solar zenith angle (SZA) ranges from $20^{\circ}$ to $70^{\circ}$ were used to examine the effects of clouds and total optical depth (TOD) on enhancing four solar irradiance components (broadband 395-955 nm, UV channel 304.5 nm, visible channel 495.2 nm, and infrared channel 869.2 nm) together with the sky camera images for the assessment of cloud conditions at the time of each measurement. The obtained clear-sky irradiance measurements were used for empirical model of clear-sky irradiance with the cosine of the solar zenith angle (SZA) as an independent variable. These developed models produce continuous estimates of global and diffuse solar irradiances for clear sky. Then, the clear-sky irradiances are used to estimate the effects of clouds and TOD on the enhancement of surface solar irradiance as a difference between the measured and the estimated clear-sky values. It was found that the enhancements occur at TODs less than 1.0 (i.e. transmissivity greater than 37%) when solar disk was not obscured or obscured by optically thin clouds. Although the TOD is less than 1.0, the probability of the occurrence for the enhancements shows 50~65% depending on four different solar radiation components with the low UV irradiance. The cumulus types such as stratoculmus and altoculumus were found to produce localized enhancement of broadband global solar irradiance of up to 36.0% at TOD of 0.43 under overcast skies (cloud cover 90%) when direct solar beam was unobstructed through the broken clouds. However, those same type clouds were found to attenuate up to 80% of the incoming global solar irradiance at TOD of about 7.0. The maximum global UV enhancement was only 3.8% which is much lower than those of other three solar components because of the light scattering efficiency of cloud drops. It was shown that the most of the enhancements occurred under cloud cover from 40 to 90%. The broadband global enhancement greater than 20% occurred for SZAs ranging from 28 to $62^{\circ}$. The broadband diffuse irradiance has been increased up to 467.8% (TOD 0.34) by clouds. In the case of channel 869.0 nm, the maximum diffuse enhancement was 609.5%. Thus, it is required to measure irradiance for various cloud conditions in order to obtain climatological values, to trace the differences among cloud types, and to eventually estimate the influence on solar irradiance by cloud characteristics.

A Study on Improvement of Hydrologic Cycle by Selection of LID Technology Application Area -in Oncheon Stream Basin- (LID 기술 적용 지역 선정에 따른 물순환 개선 연구 -온천천 유역을 대상으로-)

  • Kim, Jae-Moon;Baek, Jong-Seok;Shin, Hyun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.545-553
    • /
    • 2021
  • The frequency by water disaster in urban areas are increasing continuously due to climate change and urbanization. Countermeasures are being conducted to reduce the damage caused by water disasters. An analysis based on permeability, one of the parameters that affect runoff, is needed to predict quantitative runoff in urban watersheds and study runoff reduction. In this study, the SWAT model was simulated for the oncheon stream basin, a representative urban stream in Busan. The permeability map was prepared by calculating the CN values for each hydrologic response unit. Based on the permeability map prepared, EPA SWMM analyzed the effect of LID technology application on the water cycle in the basin for short-term rainfall events. The LID element technology applied to the oncheon stream basin was rooftop greening in the residential complex, and waterproof packaging was installed on the road. The land cover status of the land selected based on the permeability map and the application of LID technology reduced the outflow rate, peak flow rate, and outflow rate and increased the infiltration. Hence, LID technology has a positive effect on the water cycle in an urban basin.

Impacts of Three-dimensional Land Cover on Urban Air Temperatures (도시기온에 작용하는 입체적 토지피복의 영향)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.54-60
    • /
    • 2009
  • The purpose of this study is to analyze the impacts of three-dimensional land cover on changing urban air temperatures and to explore some strategies of urban landscaping towards mitigation of heat build-up. This study located study spaces within a diameter of 300m around 24 Automatic Weather Stations(AWS) in Seoul, and collected data of diverse variables which could affect summer energy budgets and air temperatures. The study also selected reflecting study objectives 6 smaller-scale spaces with a diameter of 30m in Chuncheon, and measured summer air temperatures and three-dimensional land cover to compare their relationships with results from Seoul's AWS. Linear regression models derived from data of Seoul's AWS revealed that vegetation volume, greenspace area, building volume, building area, population density, and pavement area contributed to a statistically significant change in summer air temperatures. Of these variables, vegetation and building volume indicated the highest accountability for total variability of changes in the air temperatures. Multiple regression models derived from combinations of the significant variables also showed that both vegetation and building volume generated a model with the best fitness. Based on this multiple regression model, a 10% increase of vegetation volume decreased the air temperatures by approximately 0.14%, while a 10% increase of building volume raised them by 0.26%. Relationships between Chuncheon's summer air temperatures and land cover distribution for the smaller-scale spaces also disclosed that the air temperatures were negatively correlated to vegetation volume and greenspace area, while they were positively correlated to hardscape area. Similarly to the case of Seoul's AWS, the air temperatures for the smaller-scale spaces decreased by 0.32% ($0.08^{\circ}C$) as vegetation volume increased by 10%, based on the most appropriate linear model. Thus, urban landscaping for the reduction of summer air temperatures requires strategies to improve vegetation volume and simultaneously to decrease building volume. For Seoul's AWS, the impact of building volume on changing the air temperatures was about 2 times greater than that of vegetation volume. Wall and rooftop greening for shading and evapotranspiration is suggested to control atmospheric heating by three-dimensional building surfaces, enlarging vegetation volume through multilayered plantings on soil surfaces.

Estimation of Temporal Surface Air Temperature under Nocturnal Inversion Conditions (야간 역전조건 하의 지표기온 경시변화 추정)

  • Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.75-85
    • /
    • 2017
  • A method to estimate hourly temperature profiles on calm and clear nights was developed based on temporal changes of inversion height and strength. A meteorological temperature profiler (Model MTP5H, Kipp and Zonen) was installed on the rooftop of the Highland Agriculture Research Institute, located in Daegwallyeong-myeon, Pyeongchang-gun, Gangwon-do. The hourly vertical distribution of air temperature was measured up to 600 m at intervals of 50 m from May 2007 to March 2008. Temperature and relative humidity data loggers (HOBO U23 Pro v2, Onset Computer Corporation, USA) were installed in the Jungdae-ri Valley, located between Gurye-gun, Jeollanam-do and Gwangyang-si, Jeollanam-do. These loggers were used to archive measurements of weather data 1.5 m above the surface from October 3, 2014, to November 23, 2015. The inversion strength was determined using the difference between the temperature at the inversion height, which is the highest temperature in the profile, and the temperature at 100 m from the surface. Empirical equations for the changes of inversion height and strength were derived to express the development of temperature inversion on calm and clear nights. To estimate air temperature near the ground on a slope exposed to crops, the equation's parameters were modified using temperature distribution of the mountain slope obtained from the data loggers. Estimated hourly temperatures using the method were compared with observed temperatures at 19 weather sites located within three watersheds in the southern Jiri-mountain in 2015. The mean error (ME) and root mean square error (RMSE) of the hourly temperatures were $-0.69^{\circ}C$ and $1.61^{\circ}C$, respectively. Hourly temperatures were often underestimated from 2000 to 0100 LST the next day. When temperatures were estimated at 0600 LST using the existing model, ME and RMSE were $-0.86^{\circ}C$ and $1.72^{\circ}C$, respectively. The method proposed in this study resulted in a smaller error, e.g., ME of $-0.12^{\circ}C$ and RMSE of $1.34^{\circ}C$. The method could be improved further taking into account various weather conditions, which could reduce the estimation error.

Electromagnetic Wave in all Base Stations (다기지국 환경에서 전자파 노출량)

  • Cho, Euy-Hyun;Park, Jeong-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.9
    • /
    • pp.26-44
    • /
    • 2011
  • The Study was carreid out to see whether the intensity of electromagnetic waves in each floor of a building where the sharing base station has been established is harmful to a human body, and to expect the intensity of the waves in the building. The investigate was performed on both of sharing base station either with many scatterers or without any of them. To satisfy the international standard and the domestic TTA standard, rms for each of the electromagnetic wave of every floor in the building with the station was measured from 3 location of 3 heights(1.1m,1.5m, and 1.7m). Max of the measured rsm from the each of the frequencies in the nine location was confirmed to be 48.12%(the rooftop measured value) at most, compared to the human body protection standard. The value was confirmed to satisfy the human body protection standard for each frequency. And the total value of the calculated exposure indexes for each frequency was determined to be more than 7 times lower at most, which was 0.1445, compared to the 1 standard. Since P value in both of 868MHz and 2.14GHz electromagnetic waves intensity for each base station and floor was less than 0.05, it was revealed to be meaningful, and since R-Sq(adj) value showed a value more than 50%, the regression equation was determined to fully absorb the data information. However, although the P value of both of 868MHz and 2.14GHz electromagnetic waves intensities under the integrating terms of the base station data and the floor data was showed to be less than 0,05, since R-Sq(adj) value of 868MHz electromagnetic waves intensity presented a value smaller than 50%(34.15%), it was determined that the 868MHz electromagnetic waves intensity is very much influenced by an environment with a base station. Because the electromagnetic waves intensity of 2.14GHz show R-Sq(adj) value bigger then 50%(51.8%), The regression equation model of 2.14GHz electromagnetic waves intensity was confirmed to be proper. It also turned out not to be effected by the surrounding environment near a building with the base station and the intensity of electromagnetic waves for each floor of such building was expectable by the regression equation.