• Title/Summary/Keyword: Roof span

Search Result 132, Processing Time 0.023 seconds

Development of Design Technology of Korean Style Air-Inflated Double-Layer Plastic Greenhouse (한국형 공기주입 이중피복 플라스틱온실의 설계기술 개발)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Nam, Hyo-Seok;Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.185-191
    • /
    • 2009
  • The construction of experimental greenhouses, operating test, and analysis on variation of different environment factors were conducted to provide fundamental data for design of Korean style air-inflated double-layer plastic greenhouse. The development of technology of attaching plastic to the structure and fasteners to be able to keep airtight was required in order to maintain proper static pressure in air space of double layer coverings. The insulation effect of air inflated greenhouse was better than conventional type. The temperature of arch type roof was greater about $2^{\circ}C$ than peach type roof in air inflated greenhouse. It was recommended that the plastic should be attached at the edges without clearance length in order to ease installation and raise airtightness of double layer coverings. The transmittance of arch type roof was greater than peach type in air inflated one span greenhouse. The transmittance of air inflated greenhouse was greater than conventional type due to frame ratio and distance between double layers in three span greenhouse. The condensation occurred on conventional type greenhouse was more than air inflated type. It was required to examine for a long time in order to analyze it quantitatively.

The Strength and Applications of OSB Gusset Trusses for Field Assembly (현장조립용 OSB 덧댐판 트러스의 강도 및 활용방안)

  • Kim, Tae-Woo;Ha, Bin;Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.708-713
    • /
    • 2014
  • Trusses are widely used for wooden houses in the areas where wood construction in generalized for residential housings such as North America, Australian, New Zealand. In Korea, joist and rafter system is generally used because of the production cost, transportation cost and lack of experience required for truss manufacturing. In this study, roof trusses and flat trusses were manufactured by using oriented strand board (OSB) gusset plates for field assembly and tested under bending load to obtain the allowable loads. The allowable load and the actual load of 6m span roof trusses were 10.60 kN and 5.26 kN, respectively, which is regarded to be sufficient for use in construction. The allowable load and the actual load of 6m span floor flat trusses were 7.18 kN and 7.43 kN, respectively. For flat trusses, the allowable load is slightly lower than the actual load but the difference in very small, and it is thought that flat trusses can be used for construction by applying small change of structures and members.

Structural Performance Evaluation of a Multi-span Greenhouse with Venlo-type Roof According to Bracing Installation (가새 설치에 따른 벤로형 지붕 연동온실의 구조성능 평가)

  • Shin, Hyun Ho;Choi, Man Kwon;Cho, Myeong Whan;Kim, Jin Hyun;Seo, Tae Cheol;Lee, Choung Kuen;Kim, Seung Yu
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.438-443
    • /
    • 2022
  • In this study, the lateral loading test was performed to analyze structural performance of multi-span plastic greenhouse through full-scale experiment and numerical analysis. In order to analyze the lateral stiffness and stress, we installed 9 displacement sensors and 19 strain gauge sensors on the specimen, respectively, and load of l mm per minute was applied until the specimen failure. In the comparison between the full-scale experiment and the structural analysis results of a multi-span greenhouse with venlo-type roof according to bracing installation, there was a large difference in the lateral stiffness of the structure. By installing a brace system, the lateral stiffness measured near the side elevation of the specimen increased by up 44%. As the bracing joint used in the field did not secure sufficient rigidity, the external force could not be transmitted to the entire structure properly. Therefore, it is necessary to establish a bracing construction method and design standards in order for a greenhouse to which bracing applied to have sufficient performance.

A numerical investigation of seismic performance of large span single-layer latticed domes with semi-rigid joints

  • Zhang, Huidong;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.57-75
    • /
    • 2013
  • It is still inadequate for investigating the highly nonlinear and complex mechanical behaviors of single-layer latticed domes by only performing a force-based demand-capacity analysis. The energy-based balance method has been largely accepted for assessing the seismic performance of a structure in recent years. The various factors, such as span-to-rise ratio, joint rigidity and damping model, have a remarkable effect on the load-carrying capacity of a single-layer latticed dome. Therefore, it is necessary to determine the maximum load-carrying capacity of a dome under extreme loading conditions. In this paper, a mechanical model for members of the semi-rigidly jointed single-layer latticed domes, which combines fiber section model with semi-rigid connections, is proposed. The static load-carrying capacity and seismic performance on the single-layer latticed domes are evaluated by means of the mechanical model. In these analyses, different geometric parameters, joint rigidities and roof loads are discussed. The buckling behaviors of members and damage distribution of the structure are presented in detail. The sensitivity of dynamic demand parameters of the structures subjected to strong earthquakes to the damping is analyzed. The results are helpful to have a better understanding of the seismic performance of the single-layer latticed domes.

Effects of viscous damping models on a single-layer latticed dome during earthquakes

  • Zhang, Huidong;Wang, Jinpeng;Zhang, Xiaoshuai;Liu, Guoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.455-464
    • /
    • 2017
  • Rayleigh damping model is recommended in the recently developed Performance-Based Earthquake Engineering (PBEE) methodology, but this methodology does not provide sufficient information due to the complexity of the damping mechanism. Furthermore, each Rayleigh-type damping model may have its individual limitations. In this study, Rayleigh-type damping models that are used widely in engineering practice are discussed. The seismic performance of a large-span single-layer latticed dome subjected to earthquake ground motions is investigated using different Rayleigh damping models. Herein a simulation technique is developed considering low cycle fatigue (LCF) in steel material. In the simulation technique, Ramberg-Osgood steel material model with the low cycle fatigue effect is used to simulate the non-uniformly distributed material damping and low cycle fatigue damage in the structure. Subsequently, the damping forces of the structure generated by different damping models are compared and discussed; the effects of the damping ratio and roof load on the damping forces are evaluated. Finally, the low cycle fatigue damage values in sections of members are given using these damping models. Through a comparative analysis, an appropriate Rayleigh-type damping model used for a large span single-layer latticed dome subjected to earthquake ground motions is determined in terms of the existing damping models.

Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse (플라스틱 단동온실의 천창 종류에 따른 자연환기 효과)

  • Rasheed, Adnan;Lee, Jong Won;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to $9.6^{\circ}C$ depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to $0.49min^{-1}$. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of $3.2^{\circ}C$ and a maximum ventilation rate of $0.49min^{-1}$.

Effect of Side Openings and Greenhouse Width on the Natural Ventilation Performance (측창 및 온실 폭이 자연환기 성능에 미치는 영향)

  • Hyun Woo Lee;Young Hoe Woo;Jong Won Lee
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2023
  • In summer, the natural ventilation performance for varying greenhouse width is very important in the glasshouses for year round cultivation. The effect of the side openings and greenhouse width on natural ventilation performance was analyzed by simulation. The necessary ventilation rate with different solar radiation transmittance increased significantly when the outside temperature grows higher. The necessary ventilation rate of 40% transmittance was about half of that of 90% transmittance. In consequence, shading effect on temperature control in greenhouse is significant in summer. When the total area of the openings for ventilation is constant, the maximum ventilation rate happens when the area of roof openings is equal to the area of side openings. This maximum ventilation rate is about 3 times of that of the greenhouse with roof openings and without side openings. Therefore, the side openings are advantageous to improve the natural ventilation in greenhouses. As the greenhouse width increases, the influence of side openings on the ventilation rate is becoming smaller. If the natural ventilation rate of the greenhouse with roof and side openings is to become double of that of the roof openings only, the width should be narrower than 38.4m for the Venlo type and 64m for Wide span type.

Calculated external pressure coefficients on livestock buildings and comparison with Eurocode 1

  • Kateris, D.L.;Fragos, V.P.;Kotsopoulos, T.A.;Martzopoulou, A.G.;Moshou, D.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.481-494
    • /
    • 2012
  • The greenhouse type metal structures are increasingly used in modern construction of livestock farms because they are less laborious to construct and they provide a more favorable microclimate for the growth of animals compared to conventional livestock structures. A key stress factor for metal structures is the wind. The external pressure coefficient ($c_{pe}$) is used for the calculation of the wind effect on the structures. A high pressure coefficient value leads to an increase of the construction weight and subsequently to an increase in the construction cost. The EC1 in conjunction with EN 13031-1:2001, which is specialized for greenhouses, gives values for this coefficient. This value must satisfy two requirements: the safety of the structure and a reduced construction cost. In this paper, the Navier - Stokes and continuity equations are solved numerically with the finite element method (Galerkin Method) in order to simulate the two dimensional, incompressible, viscous air flow over the vaulted roofs of single span and twin-span with eaves livestock greenhouses' structures, with a height of 4.5 meters and with length of span of 9.6 and 14 m. The simulation was carried out in a wind tunnel. The numerical results of pressure coefficients, as well as, the distribution of them are presented and compared with data from Eurocodes for wind actions (EC1, EN 13031-1:2001). The results of the numerical experiment were close to the values given by the Eurocodes mainly on the leeward area of the roof while on the windward area a further segmentation is suggested.

Stability Assessment of Abandoned Gangway for Commercial Utilization of Services (서비스업 활용을 위한 광산 폐갱도의 안정성 평가)

  • SunWoo, Choon;Chung, So-Keul;Lee, Yun-Su;Kang, Sang-Soo;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.297-309
    • /
    • 2012
  • The stability assessment of abandoned gangway for the purpose of services was performed. Among the many factors that affect the stability of openings, the span of the opening in a given rock mass condition provides an important element of design. In this paper, the stability of gangway was assessed by the critical span curves proposed by Lang, the modified Mathews'stability graph method and using support measures of the Q system. In the evaluation of stability as a whole the gangway is considered as stable. But the rockfalls of wedge-shaped blocks were expected in the area in which the horizontal joints of low angle appear. The support measures such as local rock bolts are required to use for commercial purposes of the abandoned gangway. And entrance section may require the particular attention as unstable section. Since there are so many spalling due to bad blasting in the roof and sidewall of gangway, the scaling operations should be followed primarily.

A Study on the Stability of the Single-Layer Latticed Dome during Erection Using the Step-Up Method (Step-Up 공법에 의한 단층래티스돔의 시공시 안정성 연구)

  • Koo, Choong-Mo;Jung, Hwan-Mok;Kim, Cheol-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.109-118
    • /
    • 2012
  • The large-space single-layer lattice dome is relatively simpler in terms of the arrangement of the various framework members and of the design of the junction than the multi-layered lattice dome, can reduce the numbers and quantity of the framework members, and has the merit of exposing the beauty of the framework as it stands. The single-layer lattice dome, however, requires a stability investigation of the whole structure itself, along with an analysis of the stress of the framework members, because an unstable phenomenon called "buckling" occurs when its weight reaches critical levels. Many researchers have systematically conducted researches on the stability evaluation of the single-layer lattice dome. No construction case of a single-layer lattice dome with a 300-m-long span, however, has yet been reported anywhere in the world. The large-space dome structure is difficult to erect due to the gigantic span and higher ceiling compared with other common buildings, and its construction cost is generally huge. The method of erecting a structure causes major differences in the construction cost and period. Therefore, many researchers have been conducting various researches on the method of erecting such structure. The step-up method developed by these authors can reduce the construction cost and period to a great extent compared with the other general methods, but the application of this method inevitably requires the development of system supports in the center section as well as pre-existing supports in the boundary sections. In this research, the safety during the construction of a single-layer lattice dome with 300-m-long span using pre-existing materials was examined in the aspect of structural strength, and the basic data required for manufacturing the supports in the application of the step-up method developed by these authors during the erection of the roof structure were obtained.