항공 레이저 스캐너 시스템은 3차원 공간좌표를 획득할 수 있는 센서로서 획득된 LiDAR 데이터는 공간 정보 분야에서 건물 모델링에 많이 이용되고 있다. 또한 LiDAR데이터는 불규칙한 좌표로 이루어져 있으며 시각적인 정보가 결여되어 있으므로 데이터 처리가 복잡하다. 본 연구에서는 디지털 항공영상에서 생성된 단위 요소면을 이용하여 LiDAR 데이터를 분할하고 분할된 데이터를 기반으로 다양한 지붕의 형태를 분석하여 평면, 곡면(돔형, 아치형)등으로 판별하고 건물 모델링을 위한 최적의 함수를 결정하였다. 실제 영상에서는 그림자. 색조변화 등에 의해 정확한 데이터 분할에 문제점이 발생할 수 있으므로 이를 보완하기 위하여 영상에서 경계선 추출 결과 불필요한 경계선들은 제거할 수 있는 방법이 요구된다.
Segmentation and organization of the LiDAR (Light Detection and Ranging) data of the Earth's surface are difficult tasks because the captured LiDAR data are composed of irregularly distributed point clouds with lack of semantic information. The reason for this difficulty in processing LiDAR data is that the data provide huge amount of the spatial coordinates without topological and/or relational information among the points. This study introduces LiDAR data segmentation technique by utilizing histograms of the LiDAR height image data and analyzing roof shape for 3D reconstruction and visualization of the buildings. One of the advantages in utilizing LiDAR height image data is no registration required because the LiDAR data are geo-referenced and ortho-projected data. In consequence, measurements on the image provide absolute reference coordinates. The LiDAR image allows measurement of the initial building boundaries to estimate locations of the side walls and to form the planar surfaces which represent approximate building footprints. LiDAR points close to each side wall were grouped together then the least-square planar surface fitting with the segmented point clouds was performed to determine precise location of each wall of an building. Finally, roof shape analysis was performed by accumulated slopes along the profiles of the roof top. However, simulated LiDAR data were used for analyzing roof shape because buildings with various shapes of the roof do not exist in the test area. The proposed approach has been tested on the heavily built-up urban residential area. 3D digital vector map produced by digitizing complied aerial photographs was used to evaluate accuracy of the results. Experimental results show efficiency of the proposed methodology for 3D building reconstruction and large scale digital mapping especially for the urban area.
Journal of Advanced Marine Engineering and Technology
/
제29권2호
/
pp.217-224
/
2005
A new roof edge detection method based on multi level scales of wavelet function is proposed in this paper roof edge and its direction are obtained in this new methods at one time. Besides. scale characteristics of detecting roof edge is analyzed. And a few new methods on fingerprint image pre-processing are described. A method segmenting foreground/background of fingerprint images is proposed, in which Prior estimation of direction field is not required any more. A segmentation method based on multi-scale roof edges is implemented. and the valid scale range of the method is defined. too. And the method is used to segment ridges and valleys in fingerprint images simultaneously The exact direction fields made up of the direction of each point in ridges can be obtained when detecting ridges exactly based on the roof edge detector, in comparison with the traditional coarse estimation of direction fields. Obviously. it will establish a solid foundation for the sequent fingerprint identification.
Segmentation of LiDAR data is an important procedure in building modeling. Therefore, in this study, aerial imagery is used to group LiDAR data for both improving segmentation accuracy and modeling detail surface patches of the roofs. The results show that the proposed method is efficient to analyze and to model various types of roof shape.
건물의 3차원 모델링은 3차원 공간정보를 구축하는데 있어서 매우 중요한 요소이다. 기존의 3차원 건물 모델링은 대부분 입체 항공사진을 이용하여 도화사에 의해 수동으로 진행되어 많은 시간과 비용이 소요된다. 또한 연구논문이나 실험적으로 시도되고 있는 일부 자동화 방법은 건물을 정확하고 세밀하게 묘사하는데 한계가 있다. 건물의 3차원 모델링을 자동화하기 위해서는 건물 외곽선과 지붕 모양을 정확하게 추정할 수 있는 알고리즘이 필수적이다. 최근 다양한 분야에서 활용되고 있는 항공라이다(LiDAR) 데이터는 지형지물에 대한 3차원 정보를 제공하지만, 이를 이용하여 건물 외곽선을 정확하게 추정하기에는 기술적으로 어려움이 있다. 따라서 기존에 구축된 수치지도의 건물 외곽선을 이용한다면, 항공라이다 데이터를 이용하여 3차원 평면을 최소단위로 하는 건물지붕의 구성요소들을 조합하여 자동으로 건물지붕의 3차원 모델링이 가능하다. 본 논문은 기 구축된 수치지도의 건물 외곽선과 옥트리(octree) 분할을 기반으로 항공라이다 데이터를 이용하여 건물지붕의 구성요소를 자동으로 추출하는 방법을 제안하였다. 건물지붕에 대한 항공라이다 데이터를 3차원 공간상에서 재귀적으로 분할하여 패치(patch)를 구성하고, 동일한 속성을 갖는 패치들을 병합하여 지붕의 구성요소를 추출한다. 항공라이다 데이터를 이용하여 제안된 방법으로 실험한 결과, 평면, 게이블, 다면, 곡면 등 다양한 형태의 지붕에 대한 구성요소들을 자동으로 추출 할 수 있었다.
항공 레이저 스캐닝(ALS) 시스템으로부터 획득한 LiDAR 데이터를 미용하여 3차원 객체 모델링과 지형도 제작을 위해서는 데이터의 기하학적 및 의미적인 분할과 같은 체계적인 데이터 처리가 선행되어야 한다. ALS로 부터 활용 가능한 LiDAR 데이터를 획득하기 위해서는 GPS, INS 및 레이저 스캐너 데이터의 통합이 필수적이다. 본 연구에서는 건물추출과 지붕 구조물 분할을 위해서 LiDAR 데이터를 영상화하여 디지털 영상처리 기법을 적용하였다. 영상화된 데이터를 사용하는 주요 장점 중 하나는 기존의 다양한 영상처리 알고리즘을 사용할 수 있다는 점이다. 격자화 및 정량화를 거치는 영상화 과정에서 원시 LiDAR 데이터가 한정된 밝기값으로 변환되므로 평활화 및 상세 정보의 손실이 발생될 수 있지만. 평활화된 데이터는 표면분할과 모델링에 오히려 적합하다. 건물의 경계선은 윤곽선 추출 연산자를 이용하여 정확하게 추출하였으며, 건물 모양에 적합하도록 규격화하였다. 건물 지붕의 구조물의 분할은 영역확산을 기반으로 수행하였다. 이 결과 다양한 디지털 영상처리 기법을 복합적으로 적용하여 건물추출과 지붕 구조물의 면분할이 가능함을 보여주었다. 또한 지붕의 형태를 재현하기 위한 특성정보 추출에 관한 개념적 방법을 제안하였다. 지붕 데이터를 분할하고 모델링을 위해 통계적 및 기하적 특성을 이용하였으며. 제안한 방법에 의한 시뮬레이션 결과는 지붕면을 분할하고 모델링하는데 가능함을 보여주고 있다.
Many building detection methods mainly rely on line segments extracted from aerial or satellite imagery. Building detection methods based on line segments, however, are difficult to succeed in high resolution satellite imagery such as IKONOS imagery, for most buildings in IKONOS imagery have small size of roofs with low contrast between roof and background. In this paper, we propose an efficient method to extract line segments and group them at the same time. First, edge preserving filtering is applied to the imagery to remove the noise. Second, we segment the imagery by watershed method, which collects the pixels with similar intensities to obtain homogeneous region. The boundaries of homogeneous region are not completely coincident with roof boundaries due to low contrast in the vicinity of the roof boundaries. Finally, to resolve this problem, we set up snake model with segmented region boundaries as initial snake's positions. We used a greedy algorithm to fit a snake to roof boundary. Experimental results show our method can obtain more .correct roof boundary with small size and low contrast from IKONOS imagery. Snake algorithm, building roof detection, watershed segmentation, edge-preserving filtering
In this paper, we investigate edge extraction and segmentation of range images. We first discuss problems that arise in the conventional region-based segmentation methods and edge-based ones using principal curvatures, then we propose an edge-based algorithm. In the proposed algorithm, we extract edge contours by using the Gaussian filter and directional derivatives, and segment a range image based on extracted edge contours, Also we present the problem that arises in the conventional thresholding, then we propose a new threshold selection method. To solve the problem that local maxima of the first- and second- order derivatives gather near step edges, we first find closed roof edge contours, fill the step edge region, and finally thin edge boundaries. Computer simulations with several range images show that the proposed method yields better performance than the conventional one.
Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
한국측량학회지
/
제30권6_2호
/
pp.643-651
/
2012
Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).
LiDAR 점 데이터에서 3D Hough 변환을 이용하여 건물 지붕의 평면을 추출할 경우, 추출하고자 하는 평면에 포함되지 않는 LiDAR 점 데이터로 인하여 잘못된 평면이 추출될 수 있다는 문제점과, 누적배열에서 최대값을 갖는 누적배열인자가 여러 개 발생할 수 있다는 문제점이 발생할 수 있다. 본 논문에서는 최다평면(peak plane), 정확평면(exact plane), 최확평면(LESS plane)을 정의하고 이를 이용하여 위의 문제점들을 해결하는 방법을 제안하였다. 또한, 위의 문제점이 발생할 수 있는 데이터를 제작하여 본 논문에서 제안한 알고리즘을 테스트하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.