• 제목/요약/키워드: Roof loading

검색결과 70건 처리시간 0.021초

자동차 루프랙의 형상에 따른 구조 해석을 통한 융합 연구 (A Convergence Study through the Structural Analysis due to the Shape of Automotive Roof Rack)

  • 최계광;조재웅
    • 한국융합학회논문지
    • /
    • 제10권12호
    • /
    • pp.257-262
    • /
    • 2019
  • 최근 취미로 다양한 레포츠를 즐기는 인구가 증가하였다. 그에 따라 차량 지붕위에 다양한 물건들을 적재한 차량들을 거리에서 쉽게 볼 수가 있다. 차량 지붕위에 적재를 할 수 있게 하는 장치는 랙 이라는 장치이며 차량마다 각기 다른 형상을 가지고 있다. 다양한 종류들이 있지만 무거운 짐을 적재하기 위해 강도 및 내구성을 가져야 한다. 본 연구에서는 루프 랙의 지지대 방식과 고정대의 형상에 따른 구조 해석을 하였다. 세 가지의 모델들 중, Model C가 가장 좋은 내구성을 가지고 있음을 보였다. 따라서 어떤 형상을 가진 루프랙이 가장 안정성이 있는 것을 본 연구 결과로서 알 수 있다. 본 결과를 토대로 얻은 자동차 루프랙의 형상에 따른 구조 해석에 통한 융합 연구에 대한 설계데이터를 활용함으로서 실생활에서의 자동차 부품에 융합하여 그 미감을 보일 수 있다.

A 3D CFD analysis of flow past a hipped roof with comparison to industrial building standards

  • Khalil, Khalid;Khan, Huzafa;Chahar, Divyansh;Townsend, Jamie F.;Rana, Zeeshan A.
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.483-497
    • /
    • 2022
  • Three-dimensional (3D) computational fluid dynamics (CFD) analysis of flow around a hipped-roof building representative of UK inland conditions are conducted. Unsteady simulations are performed using three variations of the k-ϵ RANS turbulence model namely, the Standard, Realizable, and RNG models, and their predictive capability is measured against current European building standards. External pressure coefficients and wind loading are found through the BS 6399-2:1997 standard (obsolete) and the current European standards (BS EN 1991-1-4:2005 and A1:20101). The current European standard provides a more conservative wind loading estimate compared to its predecessor and the k-ϵ RNG model falls within 15% of the value predicted by the current standard. Surface shear stream-traces and Q-criterion were used to analyze the flow physics for each model. The RNG model predicts immediate flow separation leading to the creation of vortical structures on the hipped-roof along with a larger separation region. It is observed that the Realizable model predicts the side vortex to be a result of both the horseshoe vortex and the flow deflected off it. These model-specific aerodynamic features present the most disparity between building standards at leeward roof locations. Finally, pedestrian comfort and safety criteria are studied where the k-ϵ Standard model predicts the most ideal pedestrian conditions and the Realizable model yields the most conservative levels.

적설하중 재하실험과 구조해석을 통한 단동 비닐하우스의 거동 연구 (An Experimental and Numerical Study on the Behavior Characteristics of Single-span Plastic Greenhouse under Snow Load)

  • 송호성;김유용;유석철;임성윤
    • 한국농공학회논문집
    • /
    • 제64권4호
    • /
    • pp.45-53
    • /
    • 2022
  • In this study, the loading test and structural analysis were performed on the snow load and the results were compared. The load plates were loaded on the roof surface of the model, and structural analysis was performed under the same conditions. The result of loading test, the maximum displacement was observed in the center of the top, and the maximum stress was observed near the bottom point. Displacement and stress were found to have a high linear relationship with the load. Comparing the structural analysis results with the loading test results, the maximum displacement difference is 4.5% and the maximum stress difference is 10.2%. It is expected that closer results can be derived if the boundary conditions for the longitudinal direction of the model are clarified during experiments and analysis.

Appraisal of deployable dome structures under wind loading

  • Parke, G.A.R.;Toy, N.;Savory, E.;Abedi, K.;Chenaghlou, R.
    • Wind and Structures
    • /
    • 제1권4호
    • /
    • pp.317-336
    • /
    • 1998
  • In this paper the appraisal of a folding dome structure under the influence of wind loading is discussed. The foldable structure considered is constructed from an assembly of interconnected elements, together with a flexible membrane, all of which are initially store in a compact form and on deployment expand, like an umbrella, into a dome structure. Loading on the dome was obtained from a wind tunnel analysis of the pressure distribution over the roof of a 1:10 scale model of the structure. The critical loading obtained from the wind tunnel investigation was used, together with individual member and material tests, to form a series of numerical non-linear finite element models which were, in turn, used to investigate the forces within the structure. The numerical analysis was used to determine the critical wind loading that the structure can sustain, as well as providing a method by which to investigate the failure modes of the structure. In order to enhance the load carrying capacity of the dome it was found that both the strength and stiffness of the structural nodes needed to be enhanced and in addition, changes were necessary to substantially increase the stiffness of the individual member and caps.

Fire resistance tests of LSF walls under combined compression and bending actions

  • Peiris, Mithum;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.483-500
    • /
    • 2022
  • Cold-formed steel wall panels sheathed with gypsum plasterboard have shown superior thermal and structural performance in fire. Recent damage caused by fire events in Australia has increased the need for accurate fire resistance ratings of wall systems used in low- and mid-rise construction. Past fire research has mostly focused on light gauge steel framed (LSF) walls under uniform axial compression and LSF floors under pure bending. However, in reality, LSF wall studs may be subject to both compression and bending actions due to eccentric loading at the wall to-roof or wall-to-floor connections. In order to investigate the fire resistance of LSF walls under the effects of these loading eccentricities, four full-scale standard fire tests were conducted on 3 m × 3 m LSF wall specimens lined with two 16 mm gypsum plasterboards under different combinations of axial compression and lateral load ratios. The findings show that the loading eccentricity can adversely affect the fire resistance level of the LSF wall depending on the magnitude of the eccentricity, the resultant compressive stresses in the hot and cold flanges of the wall studs caused by combined loading and the temperatures of the hot and cold flanges of the studs. Structural fire designers should consider the effects of loading eccentricity in the design of LSF walls to eliminate their potential failures in fire.

신라기와의 지방확산에 대한 검토 (A Study on the Diffusion of Silla Roof-End Tile)

  • 양종현
    • 헤리티지:역사와 과학
    • /
    • 제45권3호
    • /
    • pp.100-113
    • /
    • 2012
  • 최근 활발한 발굴조사가 이루어지는 가운데 영남지방에서 신라기와가 다량 출토되고 있다. 이들 중에는 특히 경주에서 출토되는 신라기와와 동범관계의 기와가 확인된다. 이에 영남지역의 신라시대막새에 대해서 경주지역 출토품과 비교하여 문양구성 등이 동일한 막새 중 동범막새와 동형막새로 구분하고 검토해 보았다. 그 중에서 특히 주목되는 유적은 인각사이다. 인각사 발굴조사에서 출토된 신라기와 중 연화문수막새를 포함한 당초문암막새 등 일부가 경주 월성과 황룡사지 등에서 출토되는 막새와 같은 틀로 제작한 동범막새의 관계인 것으로 판단된다. 이는 경주에서 제작된 막새가 각 지방으로 직접 이동한 경우와, 와범만이 이동하여 현지에서 제작된 경우, 와공이 이동하여 현지에서 제작한 경우로 정리해 볼 수 있다. 지방출토 신라기와는 인각사의 경우, 시기를 구분하여 나타나는 기와의 양상을 통해서 공존과 확장, 그리고 보수가 거듭된 상황을 파악할 수 있다. 이러한 정황은 경주로부터 비단 한시적으로 공급된 것이 아닌 지속적 관계로 이해하는 단서로서 의미가 깊다고 하겠다. 한편 신라기와가 경주에서 생산되어 각 지방으로 유입되는 과정에서도 직접유입이 이루어졌다면, 여러 가지 조건에 의해 육로운송 보다는 수로운송이 유리하였을 것으로 생각된다. 이는 대상 유적이 크고 작은 강과 하천 부근에서 확인된 것과도 깊은 연관이 있을 것으로 판단된다.

슬리브 모노폴을 이용한 PCS 및 IMT-2000 주파수대역 차량용 안테나 개발 (Development of PCS and IMT-2000 Frequency Bands Antenna for Automobile using Loading Sleeve Monopole)

  • 최광제
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.190-195
    • /
    • 2003
  • We developed a loading sleeve for Automobile, which has the PCS and IMT-2000 frequency bands. The electric characteristics of the designed sleeve monopole has SWR<1.311 and 3.0dBi in average gain for that frequency bands. In this study, the designed sleeve monopole was installed at a roof and trunk lid of vehicle. The characteristics of designed sleeve monopole was investigated by measuring SWR, input impedance and radiation pattern. The experimental results show that the efficiency of the sleeve monopole is superior th that of domestic and foreign commercial PCS antenna.

Wind pressure characteristics of a low-rise building with various openings on a roof corner

  • Wang, Yunjie;Li, Q.S.
    • Wind and Structures
    • /
    • 제21권1호
    • /
    • pp.1-23
    • /
    • 2015
  • Wind tunnel testing of a low-rise building with openings (holes) of different sizes and shapes on a roof corner is conducted to measure the internal and external pressures from the building model. Detailed analysis of the testing data is carried out to investigate the characteristics of the internal and external pressures of the building with different openings' configurations. Superimposition of the internal and external pressures makes the emergence of positive net pressures on the roof. The internal pressures demonstrate an overall uniform distribution. The probability density function (PDF) of the internal pressures is close to the Gaussian distribution. Compared with the PDF of the external pressures, the non-Gaussian characteristics of the net pressures weakened. The internal pressures exhibit strong correlation in frequency domain. There appear two humps in the spectra of the internal pressures, which correspond to the Helmholtz frequency and vortex shedding frequency, respectively. But, the peak for the vortex shedding frequency is offset for the net pressures. Furthermore, the internal pressure characteristics indirectly reflect that the length of the front edge enhances the development of the conical vortices.The objective of this study aims to further understanding of the characteristics of internal, external and net pressures for low-rise buildings in an effort to reduce wind damages to residential buildings.

Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

  • Henderson, David J.;Ginger, John D.;Morrison, Murray J.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • 제12권4호
    • /
    • pp.383-400
    • /
    • 2009
  • Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the 'Low-High-Low' (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and full-scale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a "design" cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the "design" cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The "design" cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour "design" cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.

루프형 낙석방지안전시설의 구조적 안전성 검토 연구 (Structural Safety Analysis of Newly Developed Roof-Typed Falling Rock Protection System)

  • 박철우;이학용
    • 건설안전기술
    • /
    • 통권50호
    • /
    • pp.84-96
    • /
    • 2009
  • Road is typically constructed along ridge area of mountain because of topographical and economic reasons. Therefore, road may face lots of open cut slope which can easily cause rock falling. This study evaluates the structural safety of newly developed falling rock protection system which has a roof deck plate. The structural performance under self-weight, snow load and load from failing rock was investigated using a finite element numerical analysis method. From the analysis results, the H-beam space was limited not to exceed 2.2m. The deck plate was also safe under the examined loading condition. A hinge and connection in the system were investigated through detailed modelling and analysis. The results showed that the hinge was safe enough and that the connection should strengthened with appropriate stiffeners.

  • PDF