• 제목/요약/키워드: Roof collapse

검색결과 42건 처리시간 0.017초

Effects of dead loads on the static analysis of plates

  • Takabatake, Hideo
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.761-781
    • /
    • 2012
  • The collapse of structures due to snow loads on roofs occurs frequently for steel structures and rarely for reinforced concrete structures. Since the most significant difference between these structures is related to their ability to handle dead loads, dead loads are believed to play an important part in the collapse of structures by snow loads. As such, the effect of dead loads on displacements and stress couples produced by live loads is presented for plates with different edge conditions. The governing equation of plates that takes into account the effect of dead loads is formulated by means of Hamilton's principle. The existence and effect of dead loads are proven by numerical calculations based on the Galerkin method. In addition, a closed-form solution for simply supported plates is proposed by solving, in approximate terms, the governing equation that includes the effect of dead loads, and this solution is then examined. The effect of dead loads on static live loads can be explained explicitly by means of this closed-form solution. A method that reflects the effects of dead loads on live loads is presented as an example. The present study investigates an additional factor in lightweight roof structural elements, which should be considered due to their recent development.

Effect of surface bolt on the collapse mechanism of a shallow rectangular cavity

  • Huang, Fu;Zhao, Lian-heng;Zhang, Sheng
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.505-515
    • /
    • 2017
  • Based on the collapse characteristics of a shallow rectangular cavity, a three-dimensional failure mechanism which can be used to study the collapsing region of the rock mass above a shallow cavity roof is constructed. Considering the effects of surcharge pressure and surface bolt on the collapsing block, the external rate of works produced by surcharge pressure and surface bolt are included in the energy dissipation calculation. Using variational approach, an analytic expression of surface equation for the collapsing block, which can be used to study the collapsing region of the rock mass above a shallow cavity roof, is derived in the framework of upper bound theorem. Based on the analytic expression of surface equation, the shape of the collapsing block for shallow cavity is drawn. Moreover, the changing law of the collapsing region for different parameters indicates that the collapsing region of rock mass decreases with the increase of the density of surface bolt. This conclusion can provide reference for practicing geotechnical engineers to achieve an optimal design of supporting structure for a shallow cavity.

심내막염 환자에서의 Aorto-mitral fibrous skeleton의 재건술 -치험 1례- (Reconstruction of Aorto-mitral Fibrous Skeleton in Complicated Native Valve Endocarditis -A Case Report-)

  • 민경석;서동만
    • Journal of Chest Surgery
    • /
    • 제28권2호
    • /
    • pp.183-187
    • /
    • 1995
  • This is a report of successful management of a patient with complicated native valvular endocarditis. Initially stable patient showed sudden collapse at the end of 4th week of antibiotics coverage. Echocardiography revealed that previous vegetation at the Aorto-mitral Fibrous Skeleton[AMFS developed into a false aneurysm, perforated to left atrium and caused fistulous communication between left ventricle and left atrium. Extensive debridement was performed including part of the ascending aorta, aortic cusps, the AMFS, anterior mitral cusp and roof of the left atrium. Reconstruction of the AMFS with tailored single piece of autologous pericardium enabled the implantation of mechanical valves at the aortic and the mitral position. Ascending aorta and roof of the left atrium were repaired with autologous pulmonary artery patch graft and another autologous pericardial patch. The patient was discharged on postoperative 16th day and followed - up till now without any residuae or sequelae.

  • PDF

Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions

  • Zhang, Yaning;Cheng, Zhanbo;Lv, Huayong
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.97-109
    • /
    • 2019
  • Physical conditions play vital role on the mechanical properties of frozen soil, especially for the temperature and moisture content of frozen soil. Subsequently, they influence the subsidence and stress law of permafrost layer. Taking Jiangcang No. 1 Coal Mine as engineering background, combined with laboratory experiment, field measurements and empirical formula to obtain the mechanical parameters of frozen soil, the thick plate mechanical model of permafrost was established to evaluate the safety of permafrost roof. At the same time, $FLAC^{3D}$ was used to study the influence of temperature and moisture content on the deformation and stress law of frozen soil layer. The results show that the failure tensile stress of frozen soil is larger than the maximum tensile stress of permafrost roof occurring in the process of mining. It indicates that the permafrost roof cannot collapse under the conditions of moisture content in the range from 20% to 27% as well as temperature in the range from $-35^{\circ}C$ to $-15^{\circ}C$. Moreover, the maximum subsidence of the upper and lower boundary of the overlying permafrost layer decreases with the increase of moisture content in the range of 15% to 27% or the decrease of temperature in the range of $-35^{\circ}C$ to $-15^{\circ}C$ if the temperature or moisture content keeps consistent with $-25^{\circ}C$ or 20%, respectively.

지붕하중 증가에 따른 공장건물 안정성확보를 위한 지붕외장재의 구조성능정보의 필요성 (The Necessity of Structural Performance Informations of Sandwich Panels for The Stability of Industry Building using Sandwich Panel as Roof Assemblies.)

  • 강경수
    • 한국산학기술학회논문지
    • /
    • 제18권11호
    • /
    • pp.725-730
    • /
    • 2017
  • 구조해석기법의 발전과 경제성을 중시하는 현실에 의해 건축물 주골조의 모멘트 강도비($M_u/{\Phi}M_n$)는 점차 증가하고 있다. 따라서 본 연구에서는 지붕재로 샌드위치패널을 사용하는 건축물의 안전성검토를 위하여, 지붕하중의 증가에 따른 구조해석을 실시하여 주구조부재의 $M_u/M_y$$M_u/M_p$의 변화를 검토하였다. 해석모델은 PEB구조 건물과 일반 H형강구조 건물을 대상으로 지붕하중을 증가시켜 구조해석을 실시하였다. 해석결과 해석모델의 지붕 설계하중의 약11% 증가할 경우, 주구조부재의 $M_u/M_y$가 1을 초과하였고, 약 36% 증가할 경우 작용모멘트가 소성모멘트보다 커져 부재의 파괴가 예상되었다. 중도리간격에 따른 지붕외장재가 지지할 수 있는 최대하중, KS기준에서 제시한 최대하중, 외장재생산업체의 시험값으로 산정한 최대하중을 비교하였다. 3가지 방법으로구한 패널이 지지할 수 있는 최대하중값은 주구조부재의 파괴가 예측되는 하중보다 큰 값을 나타내었다. 따라서 예상치 못한 지붕하중 증가로 인해 외장재의 파괴이전에 주구조부재의 파괴로 인한 구조물 전체 붕괴가 발생할 수 있으므로 안전성 확보를 위해서는 지붕외장재의 구조성능에 대한 정확한 정보의 필요성과 외장재 역시 구조설계대상임을 알 수 있었다.

조선 후기 왕릉 정자각 관리에 대한 문헌적 고찰 -『각릉수리등록(各陵修理謄錄, 1675-1713년)』의 정자각 훼손기록을 중심으로- (A Literary Study on the Management of the JeongJaGak(丁字閣, T shaped building) of the Joseon Royal Tombs in the Late Joseon Dynasty - Focusing on the JeongJaGak damage record of Gakneung Suri Deungnok(Records relating to the repair of royal tombs, 1675-1713) -)

  • 홍은기;황종국;장헌덕
    • 건축역사연구
    • /
    • 제32권2호
    • /
    • pp.37-48
    • /
    • 2023
  • A literature study was conducted on the management of the pavilion of the royal tomb in the late Joseon Dynasty, focusing on "Gakneung Suri Deungnok(Records relating to the repair of royal tombs)". This study analyzed the royal tomb management system, organized the types of damage identified in the building, and examined how the damage status was recorded by type. In the above, the records related to the 1675~1713 repair of three JeongJaGak(Geonwonneung, Sungneung, and Mokneung), which are registered as state-designated cultural properties, are summarized in three aspects: management system, damage status, and expression words. The results of the study are as follows. First, the royal tomb pavilion was regularly inspected by Observator(觀察使) in spring and autumn, and Surunggwan(守陵官) every 5th, and Servant(守僕) regularly inspected every day and night, and also inspected and reported emergency cases of natural disasters or unexpected damage. Second, the damage status of each building was continuously observed and reported for the continuous maintenance of the buildings in the royal tomb. A total of 75 records of damage to the three royal tombs' pavilion were found to have been most frequently inspected, including 19 cases (25.3%), 14 cases (18.7%), 23 cases (30.7%) of the roof, and 19 cases (25.3%) of the roof. Third, the expression of the damage status is confirmed in various ways, such as separation, separation, burst, damage, excitation, moisture, leakage, and exfoliation. Among them, the main damage records were confirmed due to the separation of the base from the peeling, the furniture, cracks, leaks, leaks in the roof, and the collapse of the roof was able to check the damage records.

절리 영속성이 사각 단면 지하공동에서의 사면체 블록 형성에 끼치는 영향 (Effect of Joint Persistence on the Formation of Tetrahedral Block Inside an Underground Opening)

  • 조태진
    • 터널과지하공간
    • /
    • 제26권6호
    • /
    • pp.475-483
    • /
    • 2016
  • 지하공동 굴착현장에서 관찰되는 절리분포 양상에 대한 자료를 기반으로 굴착과정에서 형성될 수 있는 사면체 블록의 형상, 규모 및 붕락 가능성을 절리 영속성을 고려하여 예측하는 수치해석 기법을 개발하였다. 절리 영속성 분석결과를 이용하여 절리면의 확장성에 따른 개착면에서의 표출정도 및 블록형성 가능성 해석을 수행하는 기능을 고안하여 기존에 개발된 결정론적 3차원 블록해석모델에 접목시켰다. 개선된 수치해석모델의 신뢰성을 고찰하기 위하여 실제 블록 붕락이 발생된 굴착현장에 대한 해석을 수행하였다. 조사된 절리분포 양상에 의거하여 대표 방향성을 설정하고 잠재적 블록 형성을 분석하여 붕락된 블록 형상에 부합된 해석 결과를 도출하였으며, 이에 근거하여 굴착과정에서의 붕락 진행 미캐니즘을 블록형상을 고려하여 고찰하였다.

An Economic Evaluation under Thailand Feed in Tariff of Residential Roof Top Photovoltaic Grid Connected System with Energy Storage for Voltage Stability Improving

  • Treephak, Kasem;Saelao, Jerawan;Patcharaprakiti, Nopporn
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.120-128
    • /
    • 2015
  • In this paper, Residential roof top photovoltaic system with 9.9 kW design is proposed. The system composed of 200 Watts solar array 33 panels connecting in series 10 strings and parallels 3 strings which have maximum voltage and current are 350 V and 23.8 A. The 10 kW sinusoidal grid-connected inverter with window voltage about 270-350 is selected to convert and transfer DC Power to AC Power at PCC (Point of Common Coupling) of power system following to utility standard. However the impact of fluctuation and uncertainty of weather condition of PV may decrease the voltage stability and voltage collapse of power system. In order to solve this problem the energy storage such 120 V 1200 Ah battery bank and 30 kVAR capacitor are designed for voltage stability control. The other expensed for installing the system such battery charger, cable, accessories and maintenance cost are concerned. The economic analysis by using investment from money loan with interest about 7% and use own money which loss income of deposit about 3% are calculated as 671,844 and 547,044 for PV system with energy storage and non energy storage respectively. The solar energy from PV is about 101,616 Bath per year which evaluated by using the value of $5kWh/m^2/day$ from average peak sun hour (PSH) of the Thailand and 6.96 Bath/kWh of Feed in Tariff Incentive. The payback periods of four scenarios are proposed follow as i) PV system with energy storage and use loan money is 15 years ii) PV system with no energy storage and use loan money is 10 years iii) PV system with energy storage and use deposit money is 9 years iv) PV system with energy storage and use deposit money is 7 years. In addition, the other scenarios of economic analysis such no FIT support and other type of economic analysis such NPV and IRR are proposed in this paper.

Stability analysis of coal face based on coal face-support-roof system in steeply inclined coal seam

  • Kong, Dezhong;Xiong, Yu;Cheng, Zhanbo;Wang, Nan;Wu, Guiyi;Liu, Yong
    • Geomechanics and Engineering
    • /
    • 제25권3호
    • /
    • pp.233-243
    • /
    • 2021
  • Rib spalling is a major issue affecting the safety of steeply inclined coal seam. And the failure coal face and support system can be affected with each other to generate a vicious cycle along with inducing large-scale collapse of surrounding rock in steeply inclined coal seam. In order to analyze failure mechanism and propose the corresponding prominent control measures of steeply inclined coal working face, mechanical model based on coal face-support-roof system and mechanical model of coal face failure was established to reveal the disaster mechanism of rib spalling and the sensitive analysis of related factors was performed. Furthermore, taking 3402 working face of Chen-man-zhuang coal mine as engineering background, numerical model by using FLAC3D was built to illustrate the propagation of displacement and stress fields in steeply inclined coal seam and verify the theory analysis as mentioned in this study. The results show that the coal face slide body in steeply inclined working face can be observed as the failure height of upper layer smaller than that of lower layer exhibiting with an irregular quadrilateral pyramid shape. Moreover, the cracks were originated from the upper layer of sliding body and gradually developed to the lower layer causing the final rib spalling. The influence factors on the stability of coal face can be ranked as overlying strata pressure (P) > mechanical parameters of coal body (e.g., cohesion (c), internal fraction angle (φ)) > support strength (F) > the support force of protecting piece (F') > the false angle of working face (Θ). Moreover, the corresponding control measures to maintain the stability of the coal face in the steeply inclined working face were proposed.

Seismic analysis and performance for stone pagoda structure under Gyeongju earthquake in Korea

  • Kim, Ho-Soo;Kim, Dong-Kwan;Jeon, Geon-Woo
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.531-549
    • /
    • 2021
  • Analytical models were developed and seismic behaviors were analyzed for a three-story stone pagoda at the Cheollyongsa temple site, which was damaged by the Gyeongju earthquake of 2016. Both finite and discrete element modeling were used and the analysis results were compared to the actual earthquake damage. Vulnerable parts of stone pagoda structure were identified and their seismic behaviors via sliding, rocking, and risk analyses were verified. In finite and discrete element analyses, the 3F main body stone was displaced uniaxially by 60 and 80 mm, respectively, similar to the actual displacement of 90 mm resulting from the earthquake. Considering various input conditions such as uniaxial excitation and soil-structure interaction, as well as seismic components and the distance from the epicenter, both models yielded reasonable and applicable results. The Gyeongju earthquake exhibited extreme short-period characteristics; thus, short-period structures such as stone pagodas were seriously damaged. In addition, we found that sliding occurred in the upper parts because the vertical load was low, but rocking predominated in the lower parts because most structural members were slender. The third-floor main body and roof stones were particularly vulnerable because some damage occurred when the sliding and rocking limits were exceeded. Risk analysis revealed that the probability of collapse was minimal at 0.1 g, but exceeded 80% at above 0.3 g. The collapse risks at an earthquake peak ground acceleration of 0.154 g at the immediate occupancy, life safety, and collapse prevention levels were 90%, 52%, and 6% respectively. When the actual damage was compared with the risk analysis, the stone pagoda retained earthquake-resistant performance at the life safety level.