• Title/Summary/Keyword: Roof Structure Frame Structure

Search Result 64, Processing Time 0.022 seconds

New Building Materials and Methods for Modernized Korean Housing (Hanok) (보급형 신한옥을 위한 부위별 공법 개발 및 영향도 분석)

  • Kim, Min;Kim, Hyosun;Ryu, Jaeseon;Jung, Youngsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.2
    • /
    • pp.23-32
    • /
    • 2014
  • Modernized Korean housing (Hanok) with competitive price has been actively developed due to the increased interests in traditional Korean housing. Developing new building materials and methods is an essential area for Modernized Hanok. This paper compared and analyzed two mock-up buildings of Modernized Hanok and one mock-up of Traditional Hanok those were actually constructed as test-beds. Many different new methods were introduced, and their influences on construction cost and schedule were analyzed in order to verify the research results as well as to find implications for future direction. As a result, the construction cost and schedule of Modernized Hanok have been decreased by about 40% and 20%, respectively, when compared with traditional one. 'Wood frame' and 'Roof' are found as being the most influencing areas with highest weights in terms of cost and schedule. Therefore, further development in these two areas would facilitate to reduce overall cost of Modernized Hanok with improved building performance.

Effect of a Supplementary Pole on the Structural Stability in the Single-span Plastic Greenhouses (단동하우스에서의 보강지주 설치 효과)

  • Yum, Sung-Hyun;Kim, Seoung-Hee;Lee, Sang-Bong;Kim, Min-Young;Kim, Chul-Soo
    • Journal of Bio-Environment Control
    • /
    • v.19 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • This study was implemented to clarify the effect of a supplementary pole on the increment of safety snow-depth for the single-span plastic greenhouses which had been run as standardized facilities for 10 to 15 years till April, 2007. In the previous work, some of the basic ideas of the use of a temporary pole were discussed, but application was restricted to both 2-D and the cases which took rafter's specifications into no consideration, and there was also much less experimental information available. So, by modeling the house as the 3-D frame structure, the present study attempted to provide a comprehensive review of the pole's effect through structural analyses as well as measurements. Structural analyses abnormally revealed that the pole regardless of its interval had a negative effect on the structural stability. The results was certainly inconsistent with practical experience and hence implied a necessity of reinforcing the roof purlin. Accordingly, with the purlin being sufficiently reinforced, the plastic greenhouse with the pole's interval of 3~4 m had two times safety snow-depth more than that of the plastic greenhouse without the pole. And the safety snow-depth of five types of the single-span plastic greenhouses according to the pole's intervals was presented.

A Study on the Pan-Jang in the Joseon Dynasty (조선시대 판장(板墻)에 관한 연구)

  • Oh, Jun-young;Kim, Young-mo
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.1
    • /
    • pp.68-83
    • /
    • 2016
  • Pan-jang(板墻) has become the lost facility, and the examples of its original form can be found no more due to its variable material characteristics. In order to study panjang as a lost facility, the following are needed: - To bring to light its usage and examples. - To investigate its components and structure. Panjang refers to the wall made of wooden plate and is classified as a special wall according to its material characteristics. In addition, Chinese mokyeongbyuk(木影壁) and Japanese panbyeong(板?) are similar to Korean panjang in terms of the materials, but there are clear differences in their structures. Panjang was also transformed into various types according to their materials or forms. As the wooden elements of panjang, sinbang(信防), pillars, do-ri(道里), jungbang(中枋), inbang(引枋), parn(板), dae(帶), choyeop(草葉), bangyeon(方椽), gaeparn(蓋板), pyeonggodae(平高臺), and yeonharm(椽檻) were selectively used, and they are similar, in particular, to the components of ilgakmoon(一角門). The stylobate of panjang is largely classified into three according to the kinds and structures of the wooden elements; and its frame into two according to whether sanginbang(上引枋) is used or not. The materials for the roof area include planks(蓋板) and tiles and have the distinct structural differences according to each material.

Analysis of Actual State of Facilities for Pleurotus eryngii Cultivation - Based on Western Gyeongnam Area - (큰느타리버섯 재배사의 실태분석 - 서부경남지역을 중심으로 -)

  • Yoon Yong Cheol;Suh Won Myung;Yu Chan
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.217-225
    • /
    • 2004
  • This study was performed to provide the basic knowledge about the mushroom cultivation facilities. Classified current status of cultivation facilities in Gyeongnam province was investigated by questionnaire. The structure of Pleurotus eryngii cultivation facilities can be classified into the simple and permanent frame type. The simple frame structures were mostly single-span type, on the other hand, the permanent frame structures were more multi-span than simple structures. And the scale of cultivation facilities was very different regardless of structural type. But as a whole, the length, width and ridge height were prevailing approximately 20.0 m, $6.6\~7.0m$ and $4.6\~5.0m$ range, respectively. The floor area was about $132\~160\;m^2$, and floor was built with concrete to protect mushrooms from various harmful infection. The roof slope of the simple and permanent type showed about $41.5^{\circ}\;and\;18.6\~28.6^{\circ}$, respectively. The width and layer number of growing bed for mushroom cultivation were around $1.2\~1.6m$, 4 layers in common, respectively. Most of year round cultivation facilities were equipped with cooler, heater, humidifier, and ventilating fan. Hot water boiler was the most commonly used heating system, the next was electric heater and then steam boiler. The industrial air conditioner has been widely used for cooling. And humidity was controlled mostly by ultra-wave or centrifuging humidifier. But some farmers has been using nozzle system for auxiliary purpose. More then $90\%$ of the mushroom house had the independent environment control system. The inside temperature was usually controlled by sensor, but humidity and $CO_2$ concentration was controlled by timer for each growing stage. The capacity of medium bottle was generally 850 cc and 1100cc, some farms used 800 cc, 950 co and 1,250 cc. Most of mushroom producted has been usually shipped to both circulating company and joint market.