• 제목/요약/키워드: Rollover

검색결과 125건 처리시간 0.032초

차량전복 방지를 위한 통합섀시제어 (Unified Chassis Control to Prevent Vehicle Rollover)

  • 윤장열;이경수;조완기;김동신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1132-1137
    • /
    • 2007
  • This paper describes a Unified Chassis Control (UCC) strategy to prevent vehicle rollover by integrating individual modular chassis control systems such as Electronic Stability Control (ESC) and Continuous Damping Control (CDC). The UCC threshold is determined from a rollover index computed by estimated roll angle, roll rate and measured lateral acceleration. A direct yaw moment control method is used to design the ESC based on a 2-D bicycle model. Similarly, the CDC is designed based on a 2-D roll model using a direct roll moment control method. The performance of the proposed UCC scheme is investigated and compared to that of modular chassis controllers through computer simulations using a validated vehicle simulator. It is shown that the proposed the UCC can lead to improvements in vehicle stability and efficient actuation of chassis control systems.

  • PDF

사진 측량법을 이용한 버스 차체 전복 시험 (Bus Body Rollover Test using Photogrammetry)

  • 정태은;이용래
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.28-35
    • /
    • 1997
  • Occupant injuries are always possible in a rollover accident, one of the major accidents in a bus. Thus the structure of body frame should have sufficient strength to protect passengers under accidental loads,. ECE(Economic Commission for Europe) regulation No.66 prescribes that residual space shall be preserved in the passenger compartment during and after the structure has been subjected to the prescribed rollover test. Rollover test on a bus section was completed according to the regulation. The coordinates of body section before and after rollover were measured, and it was checked that the structure still complied with the requirements of residual space. Direct measurement on a bus is difficult because of its large size. Thus photogrammetry by photographing and 3 dimensional digital modeling was introduced, and the coordinates of each point were measured through this method.

  • PDF

환경 정보를 이용한 상용차량 전복 방지 알고리즘 개발 (Development of Roll Stability Control of Commercial Vehicles with Environment Information)

  • 박동우;허현동;이경수
    • 자동차안전학회지
    • /
    • 제5권1호
    • /
    • pp.50-55
    • /
    • 2013
  • When it comes to commercial vehicles, their unique characteristics - center of gravity, size, weight distribution - make them particularly vulnerable to rollover. On top of that, conventional heavy vehicle brake exhibits longer actuation delays caused in part by long air lines from brake pedal to tires. This paper describes rollover prevention algorithm that copes with the characteristics of commercial vehicles. In regard of compensating for high actuating delay, predicted rollover index with short preview time has been designed. Moreover, predicted rollover index with longer preview time has been calculated by using road curvature information based on environment information. When rollover index becomes larger than specific threshold value, desired braking force is calculated in order to decrease the index. At the same time, braking force is distributed to each tire to make yaw rate track desired value.

GPS 주기전환의 실험적 분석에 관한 연구 (A Study on Experimental Analysis of GPS EOW Rollover)

  • 고광섭;심재관;최창묵;정세모
    • 한국항해학회지
    • /
    • 제23권4호
    • /
    • pp.89-96
    • /
    • 1999
  • This paper is concerned with the experimental analysis of EOW(End-of-Week) rollover. The GPS EOW Rollover happens every 20 years. Because GPS time, counted in weeks, started counting Jan. 6, 1980, the GPS week will rollover from week 1023 to 0000 at midnight between Aug. 21 and 22. This is significant because it is the first EOW rollover since the GPS constellation was established and it could be interpreted as an invalid date in receivers that were not designed to meet GPS specification. We analyzed GPS data of the noncompliant receivers and the compliant receiver. It was concluded that all receivers had not serious problems during or after the rollover.

  • PDF

차량 전복 방지를 위한 롤 및 요 운동 제어기의 성능 비교 (Comparison Among Yaw and Roll Motion Controllers for Rollover Prevention)

  • 임성진
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.701-705
    • /
    • 2014
  • This article presents a comparison among several yaw and roll motion controllers for vehicle rollover prevention. In the previous research, yaw and roll motion controllers can be independently designed for rollover prevention. Following this idea, several yaw and roll motion controllers are designed and compared in terms of rollover prevention. For the yaw motion control, PID, LQR, SMC (Sliding Mode Control) and TDC (Time-Delay Control) are adopted. For the roll motion control, LQR, LQ SOF (Static Output Feedback) control, PID, and SMC are adopted. To compare the performance of each controller, simulation is performed on a vehicle simulation package, CarSim$^{(R)}$. From simulation, TDC and LQ SOF are the best for yaw and roll motion control, respectively.

시뮬레이션을 이용한 고속도로 진출입로에서 차량속도와 곡선반경에 따른 상용차량 전복 연구 (A Simulation Study of Commercial Vehicle Rollover in Highway Ramp Section According to Vehicle Speed and Curvature)

  • 박중영;이홍국;장경진;서이정;유송민
    • 자동차안전학회지
    • /
    • 제7권2호
    • /
    • pp.50-54
    • /
    • 2015
  • Rollover accidents are a common occurrence on the highway ramp section. At highway ramp section, unexpected situations might occur due to demand on complex steering control unlike routine driving maneuver in the main streamline. Commercial vehicles have higher risk of rollover due to their high center of gravity. In this study, the lateral acceleration causing rollover would be found. In addition, sections would be classified as dangerous and safe ones by confirming the maximum lateral acceleration for various speed and curvature.

차량 전복 방지를 위한 정적 출력 피드백 제어기 설계 (Design of Static Output Feedback Controllers for Rollover Prevention)

  • 임성진;오동호
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.20-28
    • /
    • 2014
  • This paper presents static output feedback LQ and $H_{\infty}$ controllers for rollover prevention. Linear quadratic static output feedback controllers have been proposed for rollover prevention in such a way to minimize the lateral acceleration and the roll angle. Rollover prevention capability can be enhanced if $H_{\infty}$ controller is designed. To avoid full-state measurement for feedback requirement or sensitiveness of an observer to nonlinear model error, static output feedback is adopted. To design static output feedback controllers, Kosut's method is adopted because it is simple to calculate. Differential braking and active anti-roll bar are adopted as actuators that generate yaw and roll moments, respectively. The proposed method is shown to be effective in preventing rollover through the simulations on nonlinear multi-body dynamic simulation software, CarSim.

Fast fabrication of amphibious bus with low rollover risk: Toward well-structured bus-boat using truck chassis

  • Mehrmashhadi, Javad;Mallet, Philippe;Michel, Paul;Yousefi, Amin Termeh
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.427-434
    • /
    • 2019
  • This study investigates the structural integrity of the amphibious tour bus under the rollover condition. The multi-purpose bus called Dual Mode Tour Bus (DMTB) which explores on land and water has been designed on top of a truck platform. Prior to the fabrication of new upper body and sailing equipment of DMTB, computational analysis investigates the rollover protection of the proposed structure including superstructure, wheels, and axles. The Computer-Aided Design (CAD) of the whole vehicle model is meshed and preprocessed under high performance using the Altair HyperMesh to attain the best mesh model suited for finite element analysis (FEA) on the proposed system. Meanwhile, the numerical model is analyzed by employing LS-DYNA to evaluate the superstructure strength. The numerical model includes detail information about the microstructure and considers wheels and axles as rigid bodies but excludes window glasses, seats, and interior parts. Based on the simulation analysis and proper modifications especially on the rear portion of the bus, the local stiffness significantly increased. The vehicle is rotated to the contact point on the ground based on the mathematical method presented in this study to save computational cost. The results show that the proposed method of rollover analysis is highly significant not only in bus rollover tests but in crashworthiness studies for other application. The critical impartments in our suggested dual-purpose bus accepted and passed "Economic Commission for Europe (ECE) R66".

틸팅 시스템을 장착한 트레일러의 전복임계속도 특성 (Characteristics of the Rollover Critical Speed of a Trailer Equipped with a Tilting System)

  • 정태건
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.64-70
    • /
    • 2018
  • 대형트럭으로 견인되는 트레일러는 무게중심이 일반 차량에 비해 상대적으로 높기 때문에 전복사고 위험이 높게 된다. 곡선 주행 구간에서 차체를 기울여 곡선부의 주행속도를 향상시키는 원리를 적용하는 틸팅 시스템은 고속철도 차량에서 먼저 그 개념이 연구되고 사용되어 왔는데, 이 논문에서는 일반 대형트럭의 트레일러 적재함에 이 틸팅 시스템을 적용함으로써 아주 작은 틸팅각의 변화로도 급회전 시 주행 안정성을 크게 개선할 수 있는 가능성에 대해 연구하였다. 틸팅 가능한 트레일러의 동역학적 모델을 사용하여 선회주행 시 운동 관계식을 유도함으로써 주어진 도로 선회반경과 하중조건에 대해 원심력 효과와 수직력의 균형으로 전복임계속도를 결정할 수 있었다. 본 논문에서는 보수적인 기준을 선택하여 한쪽 바퀴가 지면으로부터 떨어지는 순간을 전복임계상태로 정의하였다. 실제로 틸팅 시스템을 작동시키기 위해서는 조향각과 주행속도로부터 최적 틸팅각을 계산해야 한다. 트레일러가 달린 대형트럭을 간단하게 모델링하고 시뮬레이션을 통해 곡선주행시 차량의 틸팅각에 따른 전복임계속도의 변화를 분석하고, 틸팅의 효과를 입증하였다.

차륜형 전투차량 전복 시 승무원 안전성 확보를 위한 시뮬레이션 연구 (Simulation of Rollover Crashes and Passenger Injury Assessment for a Wheeled Armored Vehicle)

  • 이경수;정의진;박경진
    • 대한기계학회논문집A
    • /
    • 제38권4호
    • /
    • pp.385-391
    • /
    • 2014
  • 차륜형전투차량은 보병부대의 전투력 강화와 기동성 향상을 목적으로 운용하는 군용차량이다. 전투차량은 운용 특성상 험난한 지형의 주행이 불가피하고 높은 무게 중심으로 인해 전복 사고의 위험성이 크다. 이러한 이유로 전투차량의 내부는 전복 사고에 따른 승무원의 안전성을 고려하여 설계해야 할 필요가 있다. 하지만 실제 차량을 이용한 시험은 현실적으로 많은 어려움이 있다. 따라서 본 연구에서는 차륜형전투차량의 전복 시험을 모사하여 승무원의 안전성을 측정하기 위한 컴퓨터 시뮬레이션 및 모델링 방법에 관한 연구를 수행한다. 본 논문의 연구 범위는 전투차량 전복 시험 조건, 전투차량 유한요소 모델링, 유한요소 인체 더미의 적용 방법, 전복 시험 시뮬레이션, 시뮬레이션 적용 시 발생 가능한 문제와 해결 방안 제시, 인체 상해치 계산 및 평가를 포함한다.