• Title/Summary/Keyword: Rolling temperature

Search Result 516, Processing Time 0.023 seconds

A Study on the Adhesion Performance of Acrylate Using Tack Rolling Ball Test (Tack Rolling Ball Test를 활용한 아크릴레이트의 점착 성능에 대한 연구)

  • Yoon, Jun-No;Park, Wan-Goo;Park, Jin-Sang;Choi, Su-Young;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.173-174
    • /
    • 2018
  • In this study, the objective of this study was to evaluate the adhesive characteristics of existing self-adhesive rubber asphalt sheet, butyl sheet and acrylate sheet in a low temperature environment through Tack Rolling Ball Test to obtain basic data on acrylate. As a result of this experiment, in the case of the self-molding rubber asphalt sheet and the butyl rubber sheet, the compound of the sheet was frozen in the low temperature environment and the iron bead was separated. On the other hand, the acrylate sheet did not freeze the acrylate even at 0 ℃, It is confirmed that the measured value is shown by Ball Test.

  • PDF

A Study on Strip Fabrication Processes Using Mushy State Rolling(I) (반용융 압연을 이용한 박판제조공정에 관한 연구( I ))

  • 백남주;강충길;김영도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.584-595
    • /
    • 1991
  • In the direct rolling processes for the mushy state alloy, a mushy state material which simultaneously contains liquid-solid phase is obtained from the exit port of stirring apparatus with a given solid fraction. This solid fraction is dependent on the temperature of within the solid-liquid range which shows to be controlled accurately by the experimental conditions for a given stirring apparatus. Rolling conditions for fabrication the fine surface strip were obtained from direct rolling experiment with mushy state alloys of Sn-75%Pb and aluminum alloy. Influence of solid fraction, rolling speed and initial roller gap on the state of strip surface and solidified structure was observed. We proposed theoretical model for prediction of rolling force, and we compared calculation result and experimental value measured with load cell.

A Cooling Roll Design and Prediction of Initial Conditions for Direct Rolling Process of Molten Metal (용탕직접압연공정의 초기조건예측 및 냉각로울 설계)

  • 강충길;김영도
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.233-244
    • /
    • 1995
  • Rolling force in the direct rolling(or twin-roll strip continuous casting) process fo semi-solid material has been computed using rigid-viscoplastic finite element method. Temperature distributions for calculations of rolling force and roll deformation are obtained from thermofluid analysis. Three dimensional roll deformation analysis has also been performed by using commercial package ANSYS. From the results, behavior of metal flow, rolling force and roll deformation have been investigated according to the process conditions of semi-solid direct rolling.

  • PDF

Through-Thickness Variation of Strain and Microstructure of AA5052 with Rolling Conditions During High Speed Hot Rolling (고속열간압연시 압연조건에 따른 AA5052의 두께방향으로의 변형량 및 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.265-269
    • /
    • 2009
  • The through-thickness variations of strain and microstructure during high-speed hot rolled 5052 aluminum alloy sheet were investigated. The specimens were rolled at temperature ranges from 410 to $560^{\circ}C$ at a rolling speed of 15 m/s without lubrication and quenched into water at an interval of 30 ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Dynamic recrystallization occurred in the surface regions of the specimen rolled under conditions of high temperatures or high rolling reductions.

Rolling Force Prediction in Cold rolling Mill using Neural Networks (신경망을 이용한 냉연 압하력 예측)

  • Cho, Yong-Jung;Cho, Sung-Zoon
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.298-305
    • /
    • 1996
  • Cold rolling mill process in steel works uses stands of rolls to flatten a strip to a desired thickness. Most of rolling processes use mathematical models to predict rolling force which is very important to decide the resultant thickness of a coil. In general, these mathematical models are not flexible for variant coil types and cannot handle various elements which is practically important to decide accurate rolling force. A corrective neural network is proposed to improve the accuracy of rolling force prediction. Additional variables-composition of the coil, coiling temperature and working roll parameters-are fed to the network. The model uses an MLP with BP to predict a corrective coefficient. The test results using 1,586 process data collected at POSCO in early 1995 show that the proposed model reduced the prediction error by 30% on average.

  • PDF

A Finite Element Model for Predicting the Microstructural Evolution in Hot Rolling (열간압연시 미세조직 예측을 위한 유한요소 모델)

  • Cho, Hyunjoong;Kim, Naksoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.90-100
    • /
    • 1997
  • A full three-dimensional thermo-coupled rigid-viscoplastic finite element method and the currently developed microstructural evolution system which includes semi-empirical equations suggested by different research groups were used together to form an integrated system of process and micro- structure simulation of hot rolling. The distribution and time histroy of the momechanical variables such as temperature, strain, strain rate, and time during pass and between passes were obtained from the finite element analysis of multipass hot rolling processes. The distribution of metallurgical variables were calculated on the basis of instantaneous thermomechanical data. For the verification of this method the evolution of microstructure in plate rolling and shape rolling was simulated and their results were compared with the data available in the literature. Consequently, this approach makes it possible to describe the realistic evolution of microstructure by avoiding the use of erroneous average value and can be used in CAE of multipass hot rolling.

  • PDF

A Basic Study on Evaluation of Comfortableness in Electric Rolling Stock (전동차내 쾌적성 평가에 관한 기초연구)

  • 박덕신;이주열;정우성
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.954-961
    • /
    • 2002
  • Ventilation system on passenger rooms should be designed for the health and comfort of the passengers. One of the main aim is to create an acceptable thermal environment without draught problems. The draught sensation increases when the air temperature decreases and the air velocity increases. Airflow in passenger rooms is turbulent. Lateral temperature and humidity gradients in the electric rolling stock have been studied. And, the difference in the mean temperatures measured at 0.7, 0.9, 1.2, 1.7 m above the floor. It has been found that temperature with large fluctuations caused more draught complains.

  • PDF

The Study on the Effect of Passenger Coach temperature When Aircurtains Installed At Electrical Rolling Stock At Entrance Door (전동차 출입문에 에어커튼 설치시 객실 온도 변화 연구)

  • Ahn Jong-Kon;Kim Chul-Ho;Park Duk-Sin
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.489-496
    • /
    • 2004
  • The effect of airconditioning and heating system when aircurtains installed in subway electrical rolling stock at entrance door. It blocks cold/hot air of outside. It is good for health with its blocking effect against dusts exhaust fumes, odor bugs and smoke from outside. It always maintains clean and pleasant atmosphere inside. It helps you to have health with its ever-equal temperature distribution at inside. It saves lots of maintenance cost for heating/cooling (about 86$\%$) since it cuts the loss of hot air under heating as well as of cold air under air-conditionin. Customers can feel pleasant go in and out (better than before) with the door. It is an indispensable product for the employers to cut the cost. It makes customers feel pleasant near doors, since it isnt influenced by temperature difference of cold/hot air when the door opens/closes. In electrical rolling stock passenger temperature is a lot different from that the door opens/closes. One of the main aims is to create an acceptable thermal environment without draught problem. Temperature, gradients when aircurtains installed in subway electrical rolling stock at entrance door have been studied. And the temperature measured at 0.1, 0.5, 1.3, 1.7m above the floor. It has been found that temperature, with large fluctuations caused more draught influence.

  • PDF

High Temperature Deformation Resistance of Stainless Steels (스테인레스강의 열간변형저항)

  • 김영환;정병완
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.366-372
    • /
    • 1999
  • The deformation behavior of commercial stainless steels under hot rolling conditions was investigated by means of hot compression tests performed in the temperature range 800$^{\circ}C$ to 1200$^{\circ}C$. The measured flow stress-strain curves were analyzed by using a simple flow stress model. It was found that the reference strength of stainless steels are much higher than that of carbon steel and that nitrogen and molybdenum alloying greatly increases flow stress of austenitic stainless steel. Ferritic and duplex stainless steel showed comparatively low flow stresses. The flow stress model, which correlates the flow stress with temperature and strain rate, was applied to predict roll forces during hot-plate rolling of stainless steels.

  • PDF

The development and application of on-line model for the prediction of strip temperature in hot strip rolling (열간 사상 압연중 판 온도예측 모델 개발 및 적용)

  • Lee J. H.;Choi J. W.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.336-345
    • /
    • 2004
  • Investigated via a series of finite-element(FE) process simulation is the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the roll and strip in hot strip rolling. Then, on the basis of these parameters, on-line models are derived for the precise prediction of the temperature changes occurring in the bite zones as well as in the inter-stand zones in a finishing mill. The prediction accuracy of the proposed models is examined through comparison with predictions from a FE process model.

  • PDF