• Title/Summary/Keyword: Rolling stock vehicle

Search Result 124, Processing Time 0.024 seconds

Curvature Estimation Method of Curve Section Using Relative Displacement Between Body and Bogie of Rolling-stock (철도차량 차체/대차간 상대변위를 이용한 곡선구간 곡률반경 추정 방법)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1479-1485
    • /
    • 2012
  • The development of a technique for the real-time sensing of a curve section is very important for active rolling-stocks in order to improve the curving performance. However, conventional methods using expensive track inspection equipment or various complex sensors are not practicable to be applied to commercial vehicles. Therefore, we have proposed a new method to estimate the curve radius of a curve section. This method uses the relative displacements occurring between the body and the bogie when the rolling-stock is running on a curve. To verify the validity of this method, we conducted a vehicle dynamics simulation and test using a real vehicle on a test line. The results confirmed the validity of the proposed method. We expect that this method will be effectively applied in studies of active rolling-stocks to increase the curving performance using active control technology.

Crashworthiness Analysis of the Urban Maglev Vehicle according to Korean Railway Safety Law and Urban Transit Safety Law (철도안전법과 도시철도안전법을 적용한 도시형 자기부상열차의 충돌안전도 해석)

  • Lee, Hyun-Cheol;Koo, Jeong-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.115-126
    • /
    • 2009
  • This paper studied on the application of the crashworthiness regulations of Korean Railway Safety Law and Urban Transit Safety Law to the urban Maglev vehicle of KIMM. The Urban Maglev vehicle has to comply with the crashworthiness regulations for urban transit vehicles. The collision load cases have been simulated by using explicit finite element analysis. From the numerical results, the crashworthiness regulations of the Urban Transit Safety Law were completely satisfied, but maximum crash pulse requirement in 25 km/h crash event and no plastic deformation requirement in 10 km/h crash event in the Korean Railway Safety Law were not. If a commercial urban Maglev vehicle is developed in the near future, it is necessary that some soft buffing and energy absorbing devices are adopted in its front end so as to satisfy the crashworthiness regulations of the Korean Railway Safety Law.

Running Safety Analysis of Railway Vehicle depending on Rail Inclination Change on Actual Track of Subway Line No.3 in Seoul (3호선 실제선로 조건에서의 레일경좌 변화에 따른 철도차량 주행안전성 해석)

  • Kim, Tae Geon;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.130-135
    • /
    • 2016
  • It is very hard to analyze the train derailment safety quantitatively at the curved section because of the diversified affect parameters including the complex interaction between wheel and rail, the train conditions such as the shape of wheel, suspension system, the track conditions such as the radius of curve, cant, transition curve, and the operation conditions, etc. Two major factors related to the running safety of railway vehicle are classified as the railway vehicle and the track condition. In this study, when the railway vehicle passing through curves of actual track condition of subway line NO.3 in seoul ($Yeonsinnae{\leftrightarrow}Gupabal$), the effect that has influence on running safety depending on rail inclination. The analysis result of 1/40 rail inclination condition is more favorable on running safety than other rail inclination conditions because derailment coefficient and wheel unloading ratio are the lowest.

A Study on Prediction of Overriding Behavior Leading Vehicle in Train Collision (철도차량 충돌시 선두차량의 타고오름량 예측 연구)

  • Kim, Jun Woo;Koo, Jeong Seo;Kim, Geo Young;Park, Jeong Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.711-719
    • /
    • 2016
  • In this study, we derived an theoretical equation, using a simplified spring-mass model for the rolling stock, to obtain the overriding behavior of a leading vehicle, which is considered as the main factor in train accidents. To verify the derived equation, we created a simple 2D model based on the theoretical model, and a simple 3D model considering the characteristics of the power bogie. We then compared the theoretical results with the simulation results obtained using LS-DYNA. The maximum relative derivations in the vertical displacements at the first end-buffer, which is the most important point in overriding, were 3.5 [%] and 1.7 [%] between the two results. Further, we evaluated collision-induced overriding displacements using the theoretical equation for a rubber draft gear, a hydraulic buffer under various collision conditions. We have suggested a theoretical approach for the realization of overriding collision accidents or the energy absorption design of the front end of trains.

A Design of Prototype 1C2M Railway Vehicle Propulsion Control System Considering Slip Reduction of Traction Motor

  • Chang, Chin-Young;Kim, Jae-Moon;Kim, Yoon-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.429-435
    • /
    • 2015
  • This study proposes a re-adhesion algorithm that has stable traction effort for rolling stock slip/slide minimization when deliverable traction decreases by slip. The proposed scheme estimates appropriate reference speed using two encoders for reducing slip and controls traction effort stably and has stable control characteristics for disturbance. The algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force stably controls traction effort and gives rolling stock excellent acceleration and deceleration characteristics. And a slip sensing element that can quickly detect slip is used. Load motor and inverter were checked in various slip conditions for creating various line conditions.

Analysis on the Running Stability of Rolling-stock according to Wheel Profile Wear (차륜답면형상 마모에 따른 차량 주행안정성 영향 분석)

  • Hur, Hyun-Moo;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.551-558
    • /
    • 2011
  • To analyze the effect of wear of wheel profile on the running stability of rolling-stock, theoretical and experimental studies were conducted on the profiles used in conventional lines. In experiment using 1/5 scale model to verify the results of the theoretical analysis, the test results of the critical speed for worn wheel profile samples show similar trend. In case of the conical type wheel profile(Profile 40), the equivalent conicity is increased with flange wear. But in case of the arc type wheel profile(Profile 20h), the equivalent conicity is decreased with flange wear. And the critical speed of the bogie was inverse proportion to the equivalent conicity. It is shown that the variation of the critical speed with the wheel wear could be changed according to the design concept and wear pattern of wheel profile. Results of the theoretical and experimental studies are discussed here.

A Study on the Parameters for Hunting of the Rolling-stock (철도차량 사행동에 미치는 인자에 관한 연구)

  • Hur, Hyun-Moo;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.98-103
    • /
    • 2006
  • The hunting is the natural characteristics of the railway wheelset which is originated from the contact between the conical type wheel profile and rail. The critical speed of rolling-stock is called when the hunting is occurred, and it is closely connected with vehicle stability. The parameters which influence the hunting motion are like wheel profile, primary spring property and wheelset dimension, etc. The studies for these parameters are reported diversely. In this study, we aim to analyze the influence of parameters on hunting with the change of wheel profile produced by wheel wear and material property produce by aging of primary spring. For this, we made a dynamic model for wheelset and vehicle. Using these models, we analyzed the critical speed with the variations of the parameters like as wheel profile and primary spring property and we show the results.

  • PDF

A study of the railroad vehicles cycle and method (철도차량 검수주기 및 방법에 관한 연구)

  • Yu, Yang-Ha
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.158-166
    • /
    • 2007
  • After constructing the high-speed railroad, KORAIL acquired advanced maintenance techniques about Rolling-stocks. Also RCM theory is applied to maintenance field like as inspection period and method. In the meantime, the development of the maintenance methode for Rolling-stock is slow when it compares to the components and system technology. For this reason KORAIL tries to build the optimal maintenance system which can lead the Rolling-stock maintenance technique. The existing vehicle except High Speed train KTX are separated to electric motor car, electric locomotive, diesel locomotive, diesel car, passenger car and freight car. The inspection period and methode for existing vehicles which mentioned above will be examined and the optimal Rolling-stock maintenance technique will be applied.

  • PDF

A Study on the Effect of Changes in Chevron Rubber Characteristics on the Vibrational Ride Comfort Level of a Subway Vehicle (도시철도차량 세브론 고무 특성 변화가 진동승차감 레벨에 미치는 영향 연구)

  • Park, Nam Cheol;Koo, Jeong Seo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2016
  • The suspension system of a subway vehicle is composed of $1^{st}$ and $2^{nd}$ springs. The suspension system is the most important parameter in determining the vibration ride comfort. If the $1^{st}$ suspension spring is designed as a spring with strong stiffness to improve the running stability at high speed, it causes vehicle vibrations. In this paper, by testing and analyzing changes of the characteristics of Chevron springs, which have been the primary suspension springs used for about 20 years, we study how changing the characteristics affects vehicle acceleration and ride comfort. The lateral and longitudinal vibrational ride comfort index levels were lower than the vertical ones. Therefore, as increasing the stiffness of Chevron springs has the greatest effect on the vertical vibrational ride comfort index level, a countermeasure for vertical vibration reduction is needed when the stiffness increases owing to aging. Finally, maintenance guidelines, including the replacement time for the Chevron rubber, were proposed based on these findings.

A Study on Propulsion Control Device Characteristics of Small-scale Electric Railway Vehicle according to Driving Curve Tracking using Fuel Cell Generation System (연료전지 발전시스템을 이용한 축소형 철도차량의 운전곡선 추종에 따른 추진제어장치 특성 고찰)

  • Jung, No-Geon;Chang, Sang-Hoon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1804-1809
    • /
    • 2015
  • The study in railway system to apply a fuel cell system with high efficiency and mobility than other renewable energy is being actively conducted. It is needed a analysis on load characteristics and control method of rolling stock in order to apply to rolling stock. This paper presents study on control small-scale prototype power converter electric railway vehicle using fuel cell generation system. Experiment is conducted through real fuel cell generation system and reference speed applying the driving curve of the actual electric railway vehicle was applied. Also, output voltage of boost converter is controlled considering characteristic of fuel cell. And it was confirmed characteristic according to powering and regeneration of inverter.