• Title/Summary/Keyword: Rolling Wear Test

검색결과 64건 처리시간 0.021초

도시철도차량의 차륜마모에 따른 횡가속도 패턴분석 (A Study on the Lateral Acceleration Pattern by the shape of Worn Wheel for the Urban Railway Vehicle)

  • 양칠식;임원식;박찬경
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.66-71
    • /
    • 2006
  • A geometric contact conditions of wheel/rail affect the dynamic behavior of rolling stock. Mechanical force acted on the wheel/rail causes excessive wear and increase the maintenance cost. In this study, we have studied the dynamic behavior of the urban railway vehicle with new and worn wheel by VAMPIRE program. And we have tested the accelerations of wheelset on the conventional line. The results of simulation are compared with the measuring data of field test. It shows that the acceleration of worn wheel is greater than the acceleration of new wheel in the straight track line but on the contrary, the acceleration of new wheel is greater than the acceleration of worn wheel in curved track. That results explain that the new wheel is worn out greater than the worn wheel in curved track line and need to be maintained more seriously when running in curved track line.

  • PDF

실리콘이 첨가된 다이아몬드상 카본 필름의 트라이볼로지적 특성에 미치는 환경변화의 영향 (Effect of Environment on the Tribological Behavior of Si-incorporated Diamond-like Carbon Films)

  • 양승호;공호성;이광렬;박세준;김대은
    • Tribology and Lubricants
    • /
    • 제16권3호
    • /
    • pp.188-193
    • /
    • 2000
  • An experimental study was performed to discover the effect of environment on the tribological behavior of Si-incorporated diamond-like carbon(Si-DLC) film slid on a steel ball. The films were deposited on Si(100) wafers by a radio-frequency glow discharge of mixtures of benzene and dilute silane gases. Experiments using a ball-on-disk test-rig was performed in vacuum, dry air and ambient air conditions. It was observed that coefficient of friction decreased as the environment changed from vacuum, to dry air. Chemical analyses of debris suggested that low and stable friction is closely related to the formation of silicon-rich oxide debris and the rolling action.

산화 방식이 Ag-CdO계 전기접점재료의 수명 특성에 미치는 영향 (A Effect of the Oxidation Process on the Lifetime Properties of Ag-CdO Contact Materials)

  • 권기봉;남태운
    • 한국주조공학회지
    • /
    • 제25권6호
    • /
    • pp.233-239
    • /
    • 2005
  • Contact material is widely used in the field of electrical parts. Ag-CdO has a good wear resistance and stable contact resistance. We studied a lifetime of Ag-CdO material because of getting better properties of Ag-CdO using Post-oxidation. The experimental procedure were melting using high frequency induction, heat treatment, rolling and internal oxidation. And we experimented on difference process, Post-oxidaion. Then we tested a lifetime and analysed. We obtained the optimizing oxidation temperature was $750^{\circ}C$. Using Pre-oxidation, coarse oxide and depleted oxidation layer existed but finer oxides were existed and depleted oxidation layer was not using Post-oxidation. In Post-oxidation, The density was 10 $g/cm^{3}$, the hardness was Hv 80 and the adhesive strength was 9000N. The specimen of Post-oxidation had better lifetime properties than that of Pre-oxidation. We predicted that the lifetime of Post-oxidation specimen is more longer twice than that of Pre-oxidation one.

티타늄 초소수성 표면의 수명 향상을 위한 레이저 처리 기법 개발 및 내수명성 평가법 개발 (Development of Laser Processing Technology and Life Evaluation Method for Lifespan Improvement of Titanium Superhydrophobic Surface)

  • 정경은;박경렬;최용석;강성민;김운성;정송이;이경준
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.91-96
    • /
    • 2024
  • Recently, extensive studies have been carried out to enhance various performance aspects such as the durability, lifespan, and hardness by combining diverse materials or developing novel materials. The utilization of superhydrophobic surfaces, particularly in the automotive, textile, and medical device industries, has gained momentum to achieve improved performance and efficiency. Superhydrophobicity refers to a surface state where the contact angle when water droplets fall is above 150°, while the contact angle during sliding motion is smaller than 10°. Superhydrophobic surfaces offer the advantage of water droplets not easily sliding off, maintaining a cleaner state as the droplets leave the surface. Surface modification involves two fundamental steps to achieve superhydrophobicity: surface roughness increase and surface energy reduction. However, existing methods, such as time-consuming processes and toxic organic precursors, still face challenges. In this study, we propose a method for superhydrophobic surface modification using lasers, aiming to create roughness in micro/nanostructures, ensuring durability while improving the production time and ease of fabrication. The mechanical durability of superhydrophobic samples treated with lasers is comparatively evaluated against chemical etching samples. The experimental results demonstrate superior mechanical durability through the laser treatment. Therefore, this research provides an effective and practical approach to superhydrophobic surface modification, highlighting the utility of laser treatment.