• 제목/요약/키워드: Rolling Tire

검색결과 60건 처리시간 0.022초

공기압에 따른 타이어의 안전성 및 경제성에 관한 실험적 연구 (An Experimental Study of Tire Safety & Economical Efficiency with Respect to Inflation Pressure)

  • 홍승준;이호근
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.8-13
    • /
    • 2010
  • Many vehicles have significantly under-inflated tires, primarily because drivers infrequently check their vehicles' tire pressure. When a tire is used while significantly under-inflated, its sidewalls flex more and the tire temperature increases, increasing stress and the risk of failure. In this study we evaluated tire safety and economical efficiency at various inflation pressure. For tire safety we performed FMVSS indoor durability test, measurement of rolling tire temperature, braking performance at dry/wet road condition, and rolling resistance test for economical efficiency. Results show that low pressure decreases tire durability of both speed-increase condition and load-increase condition. Heat temperature of rolling tire increases as pressure decreases and significantly under-inflated tires cause increase of vehicle's stopping distance at wet road condition. Also Under-inflation increases the rolling resistance of a tire and, correspondingly, decreases vehicle's fuel economy.

회전하는 타이어 내부공기의 유동특성에 관한 실험적 연구 -무부하 회전구동 타이어- (An Experimental Study on the Characteristics of Air Flow Velocity Distritutions Inside a Rolling Tire -Unloaded Rolling Tire-)

  • 김윤제;조정현
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.174-181
    • /
    • 1999
  • in order to elucidate the characteristic of velocity distribution of the cavity air. Exploratory tests were conducted on an unloaded rolling radial tire operated at various speeds and inflation pressure. A hot-wire anemometer, rotating with the tire, was used to measure the flow velocity inside the tire cavity. Tow different types of experiments were performed ; one for the effects of rolling speed with constant inflation pressure, the other for the various cavity pressures with constant rolling speed. Experimental results are given as plots of the mean velocity distributions versus the distance from the rim. It is observed that the magnitude of mean velocity in the cavity air shows increasing natures with the increasing of the inflation pressures and rolling speeds.

  • PDF

회전하는 타이어의 변형에너지 손실에 의한 온도분포 해석 (Analysis of Temperature Distribution in a Rolling Tire due to Strain Energy Dissipation)

  • 박현철;윤성기;송태석;김남전
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.746-755
    • /
    • 1997
  • This paper addresses the systematic procedure using sequential approach for the analysis of the coupled thermo-mechanical behavior of a steady rolling tire. Not only the knowledge of mechanical stresses but also of the temperature loading in a rolling tire are very important because material damage and material properties are significantly affected by the temperature. In general, the thermo-mechanical behavior of a pneumatic tire is highly complex transient phenomenon that requires the solution of a dynamic nonlinear coupled themoviscoelasticity problem with heat source resulting from internal dissipation and friction. In this paper, a sequential approach, with effective calculation schemes, to modeling this system is presented in order to predict the temperature distribution with reasonable sccuracies in a steady state rolling tire. This approach has the three major analysis modules-deformation, dissipation, and thermal modules. In the dissipation module, an analytic method for the calculation of the heat source in a rolling tire is established using viscoelastic theory. For the verification of the calculated temperature profiles and rolling resistance at different velocities, they were compared with the measured ones.

회전하는 타이어의 접지면 동특성 예측에 관한 연구 (A Study on Slow Rolling tire for Prediction of the Tire Forces and Moments)

  • 김항우;황갑운;조규종
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.161-169
    • /
    • 1997
  • 차량의 동적특성, 즉 소음, 진동, 승차감 및 조종안정성능 등에 중요한 영향을 미치는 부품중에 하나로 차체의 중량을 지지하고 노면과 접촉하여 회전하면서 조타성을 지니는 타이어를 고려하지 않을 수 없다. 지금까지의 이러한 타이어 최적설계에 이용되어지고 있는 예측기법으로는 유한요소해석 방법이 널리 활용되어 지고 있으나, 이는 타이어에 공기압 주입 및 차량의 조종안정성능이 우수한 타이어 제품개발 및 개선을 위해 차량 주행시 타이어와 노면과의 접지면에 작용하는 힘과 모멘트를 예측할 수 있는 유한요소해석 적용기법을 개발하였으며,이러한 해석기법을 통한 결과와 실측치는 매우 유사한 관계를 지니고 있음을 알 수 있었다.

  • PDF

Off-road에서 타이어공기압에 따른 피구동륜의 구름 특성 (Rolling Characteristics of Towed Wheel with Tire Inflation Pressure on Off-Road)

  • 박원엽;이홍주;홍종호;장영창;이상식;이규승
    • Journal of Biosystems Engineering
    • /
    • 제30권2호
    • /
    • pp.69-74
    • /
    • 2005
  • This study was carried out to investigate experimentally the effect of the ground condition and tire inflation pressure on rolling characteristics of towed wheel, including the deformation, sinkage, effective rolling radius and motion resistance of tire. The experiment was performed at soil bin for the three levels of off-road conditions(ground-I, ground-II and ground-III) and a on-road condition(ground-IV), and for the four levels of tire inflation pressure which were 80 kPa, 160 kPa, 240 kPa and 320 kPa. The results of this study are summarized as follows: 1. As the tire inflation pressure of towed wheel increased, the tire deformation decreased exponentially, but the tire sinkage increased exponentially. This trend was getting bigger as ground condition was getting softer. 2. The increase of tire inflation pressure increased the effective rolling radius of towed wheel, and this kind of trend occurred greatly as ground condition was soft. As a result, the effective rolling radius for the off-road condition was always larger than that for on-road condition. 3. For the on-road condition, as the tire inflation pressure of towed wheel increased, the motion resistance decreased, but for the off-road condition, augmentation of tire inflation pressure increased the motion resistance. Also, the effect of inflation pressure on motion resistance appeared great as ground condition was soft. Therefore, in order to improve the tire performance by the control of inflation pressure, it is desirable to reduce the tire inflation pressure for off-road condition and to increase the tire inflation pressure for on-road condition.

정상 상태 롤링 해석 기법 적용을 통한 타이어 패턴 형상에 따른 PRAT 특성 연구 (The Study on PRAT Performance due to Tire Pattern Shapes using Steady State Rolling Analysis Method)

  • 성기득;박현만;구병국;조춘택
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.15-21
    • /
    • 2008
  • It is generally known that the PRAT(Plysteer Residual Aligning Torque) is one of indicating a performance factors of a tire for assessing the vehicle pull, also tire pattern shape, which means lateral groove angle, is very important tire design factor in relation to the PRAT. Lateral grooves of tire pattern are widely divided into center and shoulder parts. So, this paper has studied the correlation between the PRAT and their lateral groove angles using FEM. Especially, the steady state rolling analysis among tire rolling analysis methods has been used for the PRAT performance study. Firstly, analysis result data have been compared with the experimental data to validate FE analysis for PRAT. Next, the PRAT due to the lateral groove angle about PCR(Passenger Car Radial) tire and SUV tire has been analyzed. The tendency of the PRAT due to the lateral groove angles can be used as a guide line for the tire design in relation to vehicle pull.

외연적 유한요소법을 이용한 패턴 타이어에 대한 돌기물 통과시의 동적 특성 해석 (Transient Dynamic Analysis of a Patterned Tire Rolling over a Cleat with an Explicit Finite Element Program)

  • 김기운;정현성;범현규
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.164-170
    • /
    • 2003
  • The finite element analysis of tires has been conventionally performed by either neglecting tread pattern or modeling only circumferential grooves. Besides, the tire analysis has been mainly limited to static or steady state rolling analysis. In this paper, a transient dynamic analysis of a patterned tire rolling over a cleat with an explicit finite element program is presented. The patterned tire with detailed tread blocks is modeled by a systematic mesh generation procedure, in which tire body and tread pattern meshes are separately generated in the beginning and then both meshes are combined by the tie constraint method. The cleat impact analysis is conducted by using both the patterned tire and the smooth tire models to predict the cleat enveloping characteristics. It is seen that the analysis results of the patterned tire model are in a good agreement with the experimental results.

유한요소법을 이용한 구동상태에 따른 타이어의 특성 분석 (Analysis of Tire Characteristics according to Driving Conditions using Finite Element Method)

  • 전도형;최주형;조진래;김기운
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.539-544
    • /
    • 2004
  • This paper discusses the measurement of tire driving performance for 2 types of tire model. Tire is almost composed of rubber, and this is related with the bearing capacity of tire due to the external force. In this study, an explicit time integration method has been used to simulate steady state rolling along a straight path and over a cleat. And analysis for tire dynamic response rolling over a cleat is importnat to study automobile NVH properties. Besides, the evaluation of contact shear force is perfomed for steady state rolling and braking state. The results show that there are noticeable differences between 205/60R15 and 225/60R15 tire model.

  • PDF

FINITE ELEMENT ANALYSIS OF A STEADY-STATE ROLLING TIRE TAKING THE EFFECT OF TREAD PATTERN INTO ACCOUNT

  • KIM K. W.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.101-107
    • /
    • 2006
  • The force and moment simulation of a steady-state rolling tire taking the effect of tread pattern into account is described using a steady-state transport method with ABAQUS. Tread meshes can not fully consider a tread pattern because detailed tread meshes are not allowed in the steady-state transport method. Therefore, the tread elements are modeled to have orthotropic property instead of isotropic property. The force and moment simulation has been carried out for the cases of both isotropic and orthotropic properties of tread elements. Both cases of simulation results are then compared with the experimental results. It is verified that the orthotropic case is in a better agreement with the experimental result than the isotropic case. Angle effects of tread pattern have been studied by changing the orientation angle of orthotropic property of tread. It is shown that the groove angle in the tread shoulder region has a more effect on force and moment of a tire than that in the tread center region.

품질공학을 이용한 트레드 패턴 인자의 최적설계 (Optimal Design of Tire Tread Pattern Using Quality Engineering)

  • 전태준;김수동;박성호
    • 산업공학
    • /
    • 제10권2호
    • /
    • pp.109-114
    • /
    • 1997
  • The tread pattern of tire is represented by a great number of design factors, such as groove breadth of circumference direction, breadth direction, rib breadth, block length, kerfs, tread breadth and tread radius, etc. It is not efficient in time and cost to analyze the rolling resistance for a great number of real tread pattern, because It requires lots of pattern forming handwork. In order to optimize tread pattern for rolling resistance, the experiment is planed and analyzed by Taguchi's robust design methods. We identified the important design factors for Rolling Resistance, determined the optimal condition and calculated prediction value which is related. Using the experiment data and the analyzed data, we developed the program which could predict Rolling Resistance. It is expected that time and cost may be reduced in designing and developing new tire tread pattern.

  • PDF