• Title/Summary/Keyword: Rolling Temperature

Search Result 522, Processing Time 0.021 seconds

Development of On-line Temperature Prediction Model for Plate Rolling (후판 압연의 온라인 온도예측 모델 개발)

  • 서인식;이창선;조세돈;주웅용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.283-292
    • /
    • 1999
  • Temperature prediction model was developed for on-line application to plate rolling mills of POSCO. The adequate boundary conditions of heat transfer coefficients were obtained by comparing the predicted temperature with the measured temperatures taken by measuring system in plate rolling mill of POSCO. In obtaining the boundary condition which minimize the mean and standard deviation of the difference between prediction and measurement, orthogonal array for experimental design was used to reduce the calculation time of large data set. To predict the temperature drop at four edge of plate in one dimensional model, the energy change by heat transfer though directions perpendicular to thickness direction was treated like that by deformation. And the heat transfer through four edge directions was inferred from that through thickness direction with two coefficients of depth and severity of temperature drop at the edge. The boundary condition for the depth and severity of temperature drop were also determined using the measured temperature.

  • PDF

A Study of Rolling Characterization on Mg Alloy Sheet (마그네슘 합금 판재의 압연특성연구)

  • Jeong, Y.G.;Lee, J.B.;Kim, W.J.;Lee, G.A.;Choi, S.;Jeong, H.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • Magnesium alloy AZ31, which processed by conventional rolling or extrusion, has high anisotropy of mechanical properties in its strength and elongation at room temperature. We compared the influence of differential speed rolling with conventional rolling process on microstructure and mechanical properties of commercial AZ31 sheet. Commercial AZ31 alloy sheets were processed with conventional and differential speed rolling with thickness reduction ratio of 30% at a various temperature. The elongation of AZ31 alloy, warm-rolled by differential speed rolling is larger than those rolled by conventional rolling. Besides, grain size and distribution on microstructure of the conventional rolled materials were coarse and inhomogeneous, on the contrary, those of the differential speed rolled were fine and homogeneous.

  • PDF

Evolution of temperature gradients during rolling of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ bulk metallic glass in the super cooled liquid region (Cu기 비정질 합금의 과냉각 액상구간에서 온간 압연시 Roll 온도의 영향)

  • Park, E.S.;Lee, J.H.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.409-412
    • /
    • 2006
  • Bulk metallic glass (BMG) strips of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ were produced by warm rolling of the amorphous powder canned with copper. Controlling of temperatures of the rolled sample and rolls was essential for the successive rolling process. Because improper controlling of the sample temperature gave rise to the crystallization of BMG loading to the catastrophic fracture of BMG strips, the temperature of rolls should be properly controlled for achieving successful powder rolling of BMG. The variations of the strain state and temperature in the roll gap was simulated by the finite element method(FEM) using various roll temperatures.

  • PDF

The Effect on the Thickness Variation According to Rolling Condition and Temperature Drop At Top-end in Plate Rolling (후판 압연 시 공정변수 및 선단부의 온도저하가 두께편차에 미치는 영향)

  • Yim, H.S.;Joo, B.D.;Lee, H.K.;Seo, J.H.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • The rolling process is an efficient and economical approach for the manufacturing of plate metals. In the rolling process, the temperature variation is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. Also the exit plate thickness is mainly affected by the rolling conditions such as mill modulus, plate thickness and plate width. Hence the thickness variation in top-end is also dependent on these factors. Therefore this study has concentrated on determining the correct amounts of thickness variation due to top-end temperature drop and process parameters.

Deformation Behavior during Warm Rolling in AA3103 Sheet deformed by CCSS (CCSS 가공한 AA3103 판재에서 온간 압연 소성 거동)

  • Lee J. P.;Kang H. K.;Huh M. Y.;Park J. W.;Chung Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.215-217
    • /
    • 2004
  • In order to obtain the initial starting sample having a random texture and fine grains, aluminum alloy 3103 sheets were repeatedly deformed by CCSS up to six passages and subsequently annealed at $300^{\circ}C$ for 1h. These samples were cold rolled at room temperature and also warm rolled at $250^{\circ}C$. Changes in rolling temperature gave rise to the different texture evolution. Warm rolling led to the pronounced texture gradients comprising the shear texture at the surface and the rolling texture at the sheet center. The formation of the rolling texture components, i.e., the ${\beta}$-fiber, was promoted by cold rolling than warm rolling.

  • PDF

Temperature profile analysis for HSS Roll in Hot Strip Mill (열간압연 롤의 온도 해석 결과)

  • 이명재;류재화;이희봉
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.242-251
    • /
    • 1999
  • The temperature distribution over the work roll length was estimated by solving a 2-dimensional heat transfer equation based on the rolling conditions and the thermal boundary conditions. In order to solve the governing equation, a finite volume method was employed. In the rolling conditions, the strip temperature, the contact time between roll and strip, the roll speed, the strip thickness, the rolling force and the rolling and idling time were used as input data. In order to verify the accuracy of temperature estimation, roll surface temperatures were measured in the roll shop. The measured temperatures showed a good correlation with the calculated ones.

  • PDF

Rolling of AZ31 Alloy and Microstructure of Rolled Plates (압연조건에 따른 AZ31 마그네슘합금판재의 변형거동 및 미세조직 변화)

  • Ha, T.K.;Jeong, H.T.;Sung, H.J.;Park, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.63-66
    • /
    • 2006
  • The effect of warm rolling under various conditions on the microstructure and mechanical property was investigated using an AZ31 Mg alloy sheet. Several processing parameters such as initial thickness, thickness reduction by a single pass rolling, rolling temperature, roll speed, and roll temperature were varied to elicit an optimum condition for the warm rolling process of AZ31 Mg alloy. Microstructure and mechanical properties were measured for specimens subjected to rolling experiments of various conditions. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as $200^{\circ}C$ under the roll speed of 30 m/min. The initial microstructure before rolling was the mixed one consisting of partially recrystallized and cast structures. Grain refinement was found to occur actively during the warm rolling, producing a very fine grain size of 7 mm after 50% reduction in single pass rolling at $200^{\circ}C$. Yield strength of 204MPa, tensile strength of 330MPa and uniform elongation of 32% have been obtained in warm rolled sheets.

  • PDF

A Numerical Analysis of H Shape Rolling (H 형강압연의 수치해석)

  • Park, Jong-Jin;Jeong, Nak-Joon;Kim, Jae-Joo
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.375-389
    • /
    • 1995
  • In H shape rolling, accurate predictions of deformation and temperature distribution in a billet are quite important because they are the main factors in determining roll calibers and roll pass schedules. Many researches have been performed to achieve the predictions, but most of them are limited to single pass or isothermal assumptions. In the present investigation, it is attempted to develop a method to predict the deformation and temperature distributions which is applicable to a complete rolling process that usually consists of several rollings under different rolls for a period of time. The method works by coupling two analyses : one is an approximate analysis for temperature distribution prediction and the other is the slab-FEM hybrid analysis for deformation prediction. The method is applied to analyze a "H" shape rolling process consisting of nine passes under four different rolls. In the present paper, basic ideas of the method are presented. Also, shapes of cross sections, strain and temperature distributions, roll separating force and roll torque predicted by the method are discussed.

  • PDF

Analysis of Friction Coefficient Dependent on Variation of Steel Grade and Reduction Ratio in High Temperature Rolling Process (고온압연공정에서 강종 및 감면율 변화에 따른 마찰계수 변화 분석)

  • Her, J.;Lee, H.J.;Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.410-415
    • /
    • 2009
  • Experimental and numerical studies were performed to examine the effect of material temperature and reduction ratio on friction coefficient during hot flat rolling. We carried out a single pass pilot hot flat rolling test at the temperatures range of $900{\sim}1200^{\circ}C$ and measured the spread of deformed material while reduction ratio varied from 20% to 40%. Materials used in this study were a high carbon steel and two alloy steels. The dimension of specimen used in hot rolling experiment was $50mm{\times}50mm{\times}300mm$. We performed a series of finite element simulation of the hot rolling process to compute the friction coefficient change in terms of steel grade and reduction ratio. Results showed that temperature dependency of friction coefficient is not noteworthy but the effect of reduction ratio on friction coefficient is quite large. For high carbon steel, friction coefficient at reduction ratio of 30% is lower than that at that of 20%. Meanwhile friction coefficient at reduction ratio of 40% was one and half times large compared with that at that of 20%. The effect of steel grade on friction coefficient was significant when reduction ration was large, e.g., 40%.

An Experimental Study of Tire Safety & Economical Efficiency with Respect to Inflation Pressure (공기압에 따른 타이어의 안전성 및 경제성에 관한 실험적 연구)

  • Hong, Seung-Jun;Lee, Ho-Guen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • Many vehicles have significantly under-inflated tires, primarily because drivers infrequently check their vehicles' tire pressure. When a tire is used while significantly under-inflated, its sidewalls flex more and the tire temperature increases, increasing stress and the risk of failure. In this study we evaluated tire safety and economical efficiency at various inflation pressure. For tire safety we performed FMVSS indoor durability test, measurement of rolling tire temperature, braking performance at dry/wet road condition, and rolling resistance test for economical efficiency. Results show that low pressure decreases tire durability of both speed-increase condition and load-increase condition. Heat temperature of rolling tire increases as pressure decreases and significantly under-inflated tires cause increase of vehicle's stopping distance at wet road condition. Also Under-inflation increases the rolling resistance of a tire and, correspondingly, decreases vehicle's fuel economy.