• Title/Summary/Keyword: Rolling Motion

Search Result 286, Processing Time 0.024 seconds

A Study on Propagation Characteristic of Noise Sources for Korea Train Express (한국형 고속철도의 소음 전파특성에 관한 연구)

  • 유충준;김재철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.224-229
    • /
    • 2004
  • In order to control the railway noise, the radiation characteristic of the noise when the train passes by should be analyzed. Generally, the major noise sources of the Korea Train Express are the rolling noise and power unit noise up to 300km/h. In this paper, a train model that is considered to be a row of point sourcesis introduced to analyze the radiation characteristic. The analysis results are compared with the measurement ones. It is shown that the propagation characteristic of the rolling noise is a dipole type and the noise generated by the power unit is radiated as a cosine type. With increasing of the train speed, the noise level at a receiving point is increased in the direction of motion and reduced in the direction opposite to the motion. The analysis results including the moving effect of the noise source at 300km/h show good agreement with the measurement results.

Application of FPK Equation for Nonlinear Ship Rolling in Irregular Seas (불규칙 해상에서 선체의 비선형 횡요운동에 대한 FPK 방정식의 응용)

  • Sun-Hong Kwon;Jung-Han Chung;Tae-Il Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.61-70
    • /
    • 1992
  • The method presented in this paper predicts the rolling motion of ships due to wave action. The Forker-Planck-Kolmogrov(FPK) method is adopted to evaluate the probability density function of the rolling motion which is of vital importance for design purposes. The apprximate solution of the FPK equation is obtained through averaging procedure. The accuracy of the proposed method is demonstrated by comparing with Dalzell's simulation and those from Roberts method as well.

  • PDF

Roll motion control of flight vehicles using rollerons (롤러론에 의한 비행체 롤 운동 제어)

  • 김병교;김요섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.251-255
    • /
    • 1986
  • Some missiles using canards as control device adopt rollerons to reduce roll motion due to aerodynamically induced rolling moment. This paper presents equations of motion of these missiles including the gyroscopic effect of rolleron rotors. Some linearized analysis results and simulation results are shown to coincide, thus some characteristic motions of missiles and rollerons can be seen.

  • PDF

3R 운동을 이용한 로보트 리스트에 관한 연구

  • 박경택
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.631-636
    • /
    • 1995
  • A robotic wrist with three rolling motion is considered. It has the gear trains with three independent input parameters and mechanical interference in their motion. This paper presents dervation of basic kinematic equations that relate the input parameters and the orientation of the end-effector, determination of singularities in its motion, and the computational procedure of the inverse kinematics.

A Study on an Anti-Rolling System Design of a Ship with the Flaps

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1312-1318
    • /
    • 2004
  • Roll stabilization systems for ships are employed to increase comfort for passengers, maintain full working capabilities for members of the crew and prevent cargo damage. In this paper, we have investigated the usefulness of active stabilizing system to reduce ship rolling under disturbances, using varied reaction of the flaps. In the proposed anti-rolling system for a ship, the flaps as the actuator are installed on the stern to reject rolling motion induced by disturbances such as wave. The action induced by flaps depends on power of disturbances and can take the ship balance. Especially, in this study we define the system parameters under the given system structure and design the controller to evaluate the usefulness of the proposed system.

Moving Picture Motion Vector Estimation in the Rolling Shutter Environment (Rolling Shutter 환경에서의 동영상 모션벡터 예측)

  • Cho, Jae-Jin;Lee, Seong-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.403-405
    • /
    • 2011
  • 모바일 영상 기기들에 사용되는 저전력, 고화질의 이미지 센서는 Rolling Shutter 방식을 사용하는 CIS(CMOS Image Sensor)이다. 구조적 특성에 의해 Rolling Shutter 방식을 사용하는 CIS는 촬영 환경에 의해 결과물에 왜곡을 일으키게 된다. 본 논문은 Rolling Shutter에 의한 왜곡을 분석하고 촬영된 영상의 Rolling Shutter 왜곡 모션벡터를 예측하는 알고리즘을 제안하였다. 또한 제안 알고리즘의 정확성을 높이기 위해 Sub-block과 Kalman-filter를 적용하여 Sub-pixel 단위로 계산하여 기존의 Lucas-Kanade 알고리즘 보다 효율적인 모션벡터 예측 알고리즘을 제안한다. 또한 보다 정확한 성능 변화를 추적하기 위하여 MSE 방식을 사용하여 비교 분석 하였다.

  • PDF

An Experimental Study on the System Identification and Anti-Rolling System Design for a Ship with Flaps (선미측에 플랩을 갖는 선박의 동특성 규명과 횡동요 제어계 설계)

  • 김영복;강귀봉;채규훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • We have investigated the usefulness of an active stabilizing system to reduce ship rolling under disturbances, using varying reaction of the flaps. In the proposed anti-rolling system for a ship, the flaps, as the actuator, are installed on the stern, in order to reject the rolling motion induced by disturbances, such as waves. The action induced by the flaps, which is dependent upon the power of the disturbances, can keep the ship in balance. In this study, we define the system parameters under the given system structure, using spectral analysis and experimental studies. Based on this information, we design the controller to evaluate the usefulness of the proposed system.

Analysis of Dynamic Performance of Model Tranis for Their Drive Train Design (모형기차의 구동부 설계를 위한 동역학적 성능해석)

  • Kim, Suc-Tae;Yoon, Soon-Hyung;Tak, Tae-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.99-106
    • /
    • 2001
  • Model trains should have very similar motion characteristics to real trains in order to provide realistic feeling to their operators. Main purpose of dynamic analysis of model trains is to predict velocities in straight and circular tracks and estimate stopping distance after power shut off. Equations of motion for a model train are derived that relates velocity, traction, rolling resistance, and pulling force. Also, energy equations for calculating stopping distance after power shut off are derived. Experiments with model trains are preformed to measure velocity, rolling resistance, slip, and stopping distance. The results are compared with the prediction based on the equations of motion, and they showed good agreement. It can be concluded that the prediction is more accurate when the slip between wheel and rail is accounted for. The analysis procedures can be applied to determining various design factors in model trains.

  • PDF

Effects of Vibration Rolling on Ankle Range of Motion and Ankle Muscle Stiffness in Stroke Patients: A Randomized Crossover Study

  • Park, Seju;Jeong, Hojin;Kim, Byeonggeun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.1
    • /
    • pp.2272-2278
    • /
    • 2021
  • Background: Vibration stimulation has emerged as a treatment tool to help reduce spasticity during physical therapy. Spasticity includes problems of reduced range of motion (ROM) and stiffness. However, the benefits of vibration rolling (VR) on interventions for stroke patients are unclear. Objectives: This study aimed to investigate the effect of VR intervention on the ankle ROM and ankle stiffness in stroke patients. Design: A randomized crossover study. Methods: Seven stroke patients completed two test sessions (one VR and one non-VR [NVR]) in a randomized order, with 48 hours of rest between each session. Participants completed intervention and its measurements on the same day. The measurements included ankle dorsiflexion and plantarflexion ROM and stiffness of ankle muscles, including the tibialis anterior, medial, and lateral gastrocnemius muscle. Results: After VR, ankle dorsiflexion ROM, lateral gastrocnemius stiffness, and medial gastrocnemius stiffness improved significantly (all P<.05). After NVR, only the lateral gastrocnemius stiffness improved significantly (P<.05). Furthermore, in the cases of changed values for ankle dorsiflexion ROM and lateral gastrocnemius stiffness were compared within groups, VR showed a more significant difference than NVR (P<.05) Conclusion: VR improved ankle ROM and muscle stiffness. Therefore, we suggest that practitioners need to consider VR as an intervention to improve dorsiflexion ROM and gastrocnemius stiffness in stroke patients.

Investigation of rolling resistance and surface damage of rolling elements (구름계의 구름저항 및 표면파손현상의 실험적 고찰)

  • Cha, Kum-Hwan;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2019-2028
    • /
    • 1997
  • It has been well established that resistant force and wear that occur during rolling motion depend on several factors such as material type, hardness, subsurface microstructure, applied load, and speed. The purpose of this work is to investigate the effect of microstructure and the state of deformed layer on the rolling contact characteristics in dry and lubricated rolling contacts. The results of this work show that the rolling resistance behavior depends on the state of the deformed layer. Also, lubrication can reduce the plastic flow at the surface but may still have an effect on the subsurface strain. The cross-sectional view of the microstructure shows that surface traction has a difinite effect on the morphology of the surface region. That is, significant slip seems to have taken place between the ball than those of the dry rolling case. The surface generation effects were significantly less compared to the case of dry rolling contact.