• Title/Summary/Keyword: Rolling Angle

Search Result 214, Processing Time 0.028 seconds

Evolution of strain states during Cross-roll rolling in AA 5052 sheet for varying cross-roll angle using FEM (유한요소 해석을 통한 AA 5052 판재의 Cross-roll 압연시 Cross angle에 따른 변형을 상태의 변화)

  • Kim, S.H.;Kang, H.G.;Kim, D.G.;Lee, J.S.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.95-98
    • /
    • 2008
  • In the present work, cross-roil rolling was rallied out using a rolling mill in which the roll axes are tilted by $5^{\circ},\;7.5^{\circ},\;10^{\circ}$ towards the transverse direction of the roiled sample. The evolution of strain states during cross-roll rolling was investigated by three-dimensional finite element method (FEM) simulation. Parallel to cross-roll rolling, normal-rolling using a conventional rolling mill was also carried out in the same rolling condition for clarifying the effect of cross-roll rolling. It turned out that three shear rate components were all introduced to the rolled sample by the cross-roll rolling process, while only one shear rate component operated during normal-rolling.

  • PDF

Numerical Study on Defect Analysis of Hot Cross Wedge Rolling Process (열간전조공정의 공정결함 분석을 위한 해석적 연구)

  • Lee, Hyoung Wook
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.17-21
    • /
    • 2013
  • Hot cross wedge rolling process as an incremental forming has many advantages such as the material usage, the short process time, the automatic equipment line and the low forming load. However, it occurs some defects such as the surface groove, the axis warping and the Mannesmann hole. In this paper, the defect of the Mannesmann hole was carried out. Finite element analysis was utilized to reveal the stress distribution, the rotation of the specimen and the change of section profile. Cross wedge rolling experiment was also conducted on the generation of the Mannesmann hole. It was demonstrated according to the spreading angle with respect to the various types of material. In the view point of metal flow, the smaller forming angle and the larger spreading angle increase opportunities of the defect hole generations.

  • PDF

Manipulability Analysis of a New Parallel Rolling Mill Based upon Two Stewart Platforms (두 개의 스튜어트 플랫폼을 이용한 병렬형 신 압연기의 조작성 해석)

  • 이준호;홍금식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.925-936
    • /
    • 2003
  • The manipulability analysis of the parallel-type rolling mill proposed in Hong et al. [1] is re-visited. The parallel rolling mill uses two Stewart platforms in opposite direction for the generation of 6 degree-of-freedom motions of each roll. The objective of this new parallel rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of rolls, and tension of the strip. New forward/inverse kinematics problems, in contrast with [1], are formulated. The forward kinematics problem is defined as the problem of finding the roll-gap and the pair-crossing angle of two work rolls for given lengths of twelve legs. On the other hand, the inverse kinematics problem is defined as the problem of finding the lengths of twelve legs when the roll-gap, the pair-crossing angle, and the position and orientation of one work roll are given. The method of manipulability analysis used in this paper follows the spirit of [1]. But, because the rolling force and moment exerted from both upper and lower rolls have been included in the manipulability analysis, more accurate results than the use of a single platform can be achieved. Two. kinematic parameters, the radius of the base and the angle between two neighboring joints, are optimally designed by maximizing the global manipulability measure in the entire workspace.

Effects of Static Contact Angle and Roughness on Rolling Resistance of Droplet (액적의 구름저항에 대한 정접촉각 및 거칠기의 영향)

  • Cho, Won Kyoung;Cho, Sang Uk;Kim, Doo-In;Kim, Dae-Up;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In this study, the effects of the contact angle (CA) and contact angle hyteresis (CAH) of planar and nano-patterned surfaces on rolling resistance of water droplet were studied. Based on the investigation on the CAH of water droplet on surfaces with various static wettability, it was found that the rolling resistance coefficient of water droplet is highly influenced by the surface pattern as well as CAH. The observed results suggest that the optimal surface patterns should be designed in order to minimize the rolling resistance of water droplet for the practical applications where superhydrophocitiy is required.

Roll Profile Design Considering Spread in Shape Rolling of Angle Bar by FE-analysis and Response Surface Method (유한요소해석과 반응표면법을 이용한 앵글바의 폭퍼짐 예측 및 공형설계에 관한 연구)

  • Lee, Sang Jin;Ko, Dae Cheol;Lee, Sang Kon;Kim, Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1368-1375
    • /
    • 2012
  • In this paper, a method for prediction of spread is proposed to design proper roll profile taking into account spread in shape rolling of angle bar. The effect of the process variables on spread, such as draught ratio, bending angle and aspect ratio, is analyzed by FE-analysis and response surface method (RSM). Roll profiles for equal angle bar are designed with the spread predicted by the regression equation. Effectiveness of the designed roll profiles are verified by FE-analysis in which the flange length, strain distribution, mean strain and roll torque are compared with those by Geuze. Finally, the proposed method is applied to the design of roll profile for unequal angle bar. As a result, the final product can be obtained within the allowable tolerance of ${\pm}0.5mm$ in length. Therefore, it is found that the prediction of spread can improve the efficiency of design roll profile in shape rolling of angle bar.

Variation of the Thermal Diffusivity of Copper Alloy with Reduction in Thickness and Heat Flow Direction in Rolling Process (銅合金 의 壓延時 壓延率 과 熱流動 方向 에 따른 熱擴散 係數 의 變化)

  • 박희용;배신철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.462-468
    • /
    • 1984
  • The variation of thermal diffusivity with respect to rolling reduction is experimentally determined by flash technique. Copper alloy is used as an experimental and specimens are cut from the slab produced by rolling process with different percent reduction in thickness along the rolling direction and with 30.deg. 60.deg. and 90.deg. angle to the rolling direction. It is found that thermal diffusivity is slightly decreased as rolling reduction increased, and it has tendency that thermal diffusivity is increased slightly as its angle approached to 90.deg. at same rolling reduction.

Finite Element Analysis of an Elongation Rolling Process for Manufacturing Seamless Pipes (심리스 파이프 제조를 위한 일롱게이션 공정의 유한요소해석)

  • Jung, Seung Hyun;Shin, Yoo In;Song, Chul Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.923-928
    • /
    • 2014
  • Elongation rolling process is an intermediate process to make the uniform thickness and uniform surface roughness during producing seamless pipes. The thickness and surface roughness of seamless pipes are generally affected by the distance of rolls and guide shoes, the roll shape, and its cross angle. In this study, finite element analysis for shape forming process is based on the analysis model of elongation rolling mill with guide shoes. This paper shows how the cross angle of the roll, the rolling rpm, and the distance of the guide shoe influence on the outer diameter and the thickness of seamless pipes. The rolling rpm did not give much influence on outer diameter.

Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE (CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계)

  • Lee H. W.;Yoon D. J.;Lee G. A.;Choi S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

Roll Angle Estimation of a Rolling Airframe Using a GPS and a Roll Rate Gyro (단일 GPS와 롤각속도계를 이용한 롤 회전 비행체의 롤자세각 추정)

  • Hong, Ju-Hyeon;Kim, Dusik;Ryoo, Chang-Kyung;Lee, Chang-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.133-140
    • /
    • 2015
  • In this paper, a roll angle estimation method of a rolling airframe using a low grade GPS and a roll rate gyro is proposed. The strength of the received signal of the GPS antenna attached on the rolling airframe is maximized when the GPS satellite is placed on the plane determined by the x-axis of the rolling airframe and the GPS antenna axis. Under the assumption that the x-axis of the rolling airframe is coincident with its velocity vector, the roll angle of the rolling airframe is calculated from the relative position vector of the satellite to the GPS when the GPS signal strength becomes maximum. The Kalman filter combined with a roll rate gyro is introduced to increase the determination accuracy of the roll angle. The performance of the proposed method is verified via 6-DOF simulations.