• Title/Summary/Keyword: Roll mixture

Search Result 30, Processing Time 0.02 seconds

A Study on the Characterization Method of Materials in Hanji Costumes (한지의상에 나타난 소재 표현기법 연구)

  • Lee, Su-Jeong;Chae, Seon-Mee
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.433-439
    • /
    • 2004
  • Hanji costumes has four aspects that allow the creator or artist to create many variations. The pictorial effects of Hanji costumes are produced through variations in the dyes and brushes used for its application. The amount of water and texture of the Hanji mixture also influences the Hanji clothing. This effect was expressed using a dry brush technique, a dripping technique, India inks, and fragments from other Hanji works. A second aspect of Hanji clothing is the coloring effect in the Hanji costumes. The coloring is due to the fibers in the preparation mixture and the uniqueness of the dyes. The Hanji clothing was dyed various colors and patterns by dip dyeing, block dyeing, silk screens, digital printing. The third aspect of Hanji imagination in clothing is the decorative details. The details in Hanji clothing can be seen using frills, pleats, tucks and ribbons. The last variation of Hanji clothing can be expressed through crafting techniques. These techniques are the quality of paper string, cuts in the paper and paste ingredients. With Hanji cloth, it is possible to plait, roll, and crample into other flexible & useful materials.

$MgB_2$ Sheets using Mixture of Mg and B Powders by Powder Roll Compaction (Mg과 B 혼합분말을 이용하여 분말압연 공정으로 제조된 $MgB_2$ 초전도 판재연구)

  • Chung, K.C.;Chang, S.H.;Sinha, B.B.;Kim, J.H.;Dou, S.X.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.184-188
    • /
    • 2012
  • $MgB_2$ superconducting sheets have been fabricated by powder rolling method using mixture of Mg and B powders. Sheet-type $MgB_2$ bulk samples of ~10 mm width and 50-100 mm long were squeezed out after compacted by two rotating rolls of 130 mm diameter with gap distance of 0.5 mm and speed of ~40 cm/min (~1 rpm). The nominal composition of Mg, which is ductile metal, was added up to 30% to facilitate forming the $MgB_2$ sheets. The annealed samples at $900^{\circ}C$ and 3 hrs showed superconducting transition temperature of ~32 K and critical current densities at zero fields were ${\sim}10^5A/cm^2$ at 5 K and ${\sim}5{\times}10^4A/cm^2$ at 20 K.

Photosensitive Barrier Rib Paste for PDP and Photolithographic Process (Plasma Display Panel용 감광성 격벽 재료 및 Photolithography 공정 성질)

  • Park, Lee Soon;Jeong, Seung Won;Oh, Hyun Shik;Kim, Soon Hak;Song, Sang Moo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1114-1118
    • /
    • 1999
  • Barrier rib for the plasma display panel(PDP) was made by photolithographic process utilizing photosensitive barrier rib paste. The barrier rib paste was prepared by first dissolving ethylcellulose(binder polymer) in butyl carbitol(BC)/butyl carbitol acetate(BCA) =30/70 wt % mixture solvent at 15 wt % concentration. To this solution a mixture of functional monomers consisted of tripropyleneglycol diacrylate/ pentaerythritol triacrylate = 50/50 wt %, Irgacur 651 photoinitiator, and barrier rib powder were added and then the whole mixture was mixed in the three roll mill for 2 hr. The effect of component and concentration of photosensitive barrier paste on the photolithographic process was studied. After optimization of the paste formulation and photolithographic process, barrier rib could be obtained with good resolution up to $100{\mu}m$ height.

  • PDF

Modeling and Analysis of a Pendulum Dancer in Industrial Converting Machines (산업용 컨버팅 머신의 펜듈럼 덴서 모델링 및 해석)

  • Kang, Hyun-Kyoo;Shin, Kee-Hyun;Kim, Sang-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.482-488
    • /
    • 2009
  • Dancer system is typically used equipment for attenuation of tension disturbances. In industrial converting machines, a composite type of dancer system is applied which is mixture of active and passive dancer. It includes feedback position control loop of roll with pendulum dancer and its characteristics is different from passive and active one. In this paper, a mathematical model of the pendulum dancer was derived including PI position feedback controller and it was analyzed by using a pole-zero map and bode plot under various conditions. It was found out that velocity, length of span and inertia were associated with the performance of regulation. It was suggested that the length of upstream span should be greater than that of the downstream and the inertia should be smaller for improvement of the performance. The results can be used for design guidelines of the industrial dancer system.

Three Dimensional Numerical Analysis of the Walking Beam Type of a Hot Roll Reheat Furnace (Walking Beam형 열연 재가열로의 3차원 수치해석)

  • Kim J. K.;Huh G. Y.;Kim I. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.199-204
    • /
    • 1999
  • Three dimensional numerical analysis for the turbulent reactive flow and radiative heat transfer in the walking beam type of a reheat furnace in POSCO has been carried out by the industrial code FLUENT. Computations an based on the conservation equations of mass, momentum, energy and species with the $k-{\varepsilon}$ turbulence model and mixture fraction/PDF(Probability Density Function) approach for the combustion rate. Radiative heat transfer is computed by the discrete ordinates radiation model in combination with the weighted-sum-of-gray-gas model for the absorption coefficient of gas medium. The predicted temperture distribution in the reheat furnace and energy flow fractions are in reasonable agreement with the measurement data.

  • PDF

Temperature and Strain Rate Dependent Tension Properties of Stainless Steel-Aluminum-Magnesium Multilayered Sheet Fabricated by Roll Bonding (롤 아연된 STS-Al-Mg 이종금속판재의 온도와 변형률속도에 따른 1축인장 변형특성)

  • Hwang, B.K.;Lee, K.S.;Hong, S.E.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • Multilayer(clad) sheets, composed of two or more materials with different properties, are fabricated using the roll-bonding process. A good formability is an essential property for a multilayered sheet in order to manufacture parts by plastic deformation. In this study, the influences of temperature and strain rate on the plastic properties of stainless steel-aluminum-magnesium multilayered(STS-Al-Mg) sheets were investigated. Tensile tests were performed at various temperatures and strain rates on the multilayered sheet and on each separate layer. Fracture of the multilayered sheet was observed to be temperature-dependent. At the base temperature of $200^{\circ}C$, all materials fractured simultaneously. At lower temperatures, the Mg alloy sheet fractured earlier than the other materials. Conversely, the other materials fractured earlier than the Mg alloy sheet at higher temperatures. The uniform and total elongations of the multilayered sheet were observed to be higher than that of each material at a temperature of $250^{\circ}C$. Larger uniform elongations were obtained for higher strain rates at constant temperature. The same trend was observed for the Mg alloy sheet, which exhibited the lowest elongation among the three materials. The tensile strengths and elongations of the single layer sheets were compared to those of the multilayer material. The strength of the multilayered sheet was successfully calculated by the rule of mixture from the values of each single layer. However, no simple correlation between the elongation of each layer and that of the multilayer was obtained.

Impact of Energy and Access Methods on Extrahepatic Tumor Spreading and the Ablation Zone: An Ex vivo Experiment Using a Subcapsular Tumor Model

  • Jin Sil Kim;Youngsun Ko;Hyeyoung Kwon;Minjeong Kim;Jeong Kyong Lee
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.580-588
    • /
    • 2019
  • Objective: To evaluate the impact of energy and access methods on extrahepatic tumor spreading and the ablation zone in an ex vivo subcapsular tumor mimic model with a risk of extrahepatic tumor spreading. Materials and Methods: Forty-two tumor-mimics were created in bovine liver blocks by injecting a mixture of iodine contrast material just below the liver capsule. Radiofrequency (RF) ablations were performed using an electrode placed parallel or perpendicular to hepatic surface through the tumor mimic with low- and high-power protocols (groups 1 and 2, respectively). Computed tomography (CT) scans were performed before and after ablation. The presence of contrast leak on the hepatic surface on CT, size of ablation zone, and timing of the first roll-off and popping sound were compared between the groups. Results: With parallel access, one contrast leak in group 1 (1/10, 10%) and nine in group 2 (9/10, 90%) (p < 0.001) were identified on post-ablation CT. With perpendicular access, six contrast leaks were identified in each group (6/11, 54.5%). The first roll-off and popping sound were significantly delayed in group 1 irrespective of the access method (p = 0.002). No statistical difference in the size of the ablation zone of the liver specimen was observed between the two groups (p = 0.247). Conclusion: Low-power RF ablation with parallel access is proposed to be effective and safe from extrahepatic tumor spreading in RF ablation of a solid hepatic tumor in the subcapsular location. Perpendicular placement of an electrode to the capsule is associated with a risk of extrahepatic tumor spreading regardless of the power applied.

Properties of Polypropylene/CaCO3 Composites from the Shape of Calcium Carbonate (Polypropylene/CaCO3 복합재료에 있어서 입자 형태에 따른 물성)

  • Lyu, S.G.;Bae, K.S.;Sur, G.S.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.771-776
    • /
    • 1997
  • The various shape of calcium carbonate were prepared. For the preparation of the PP/$CaCO_3$ composite, these synthetic calcium carbonate(cubic, spheric and neddle type) and PP were mixed on a two roll mill and the mixture were pressed into plate. The effect of particle shape in the prepared composite on the crystallization temperature, heat of fusion, size of spherulite and mechanical properities were investigated. It was found that the former four were strongly influenced by that. When, especially, vaterite was mixed with PP, the size of spherulite was smaller and the degree of crystallinity was higher than others. Therefore, the tensile strength and Young's modulus were higher.

  • PDF

Adsorption Characteristics of $CH_4/CO_2$ Mixed Gases on Activated Carbon Fibers (활성탄소섬유상에서 CH4/CO2 혼합가스의 흡착 특성)

  • Moon, Seung-Hyun;Shim, Jae-Woon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.655-662
    • /
    • 2004
  • An adsorption process to recover the pure $CH_4\;and\;CO_2$ from its mixture was examined. In this study, activated carbon fibers were used as a selective adsorbent. The activated carbon fibers has 78~94% micropore volume and 10.5~20.3${\AA}$ narrow pore size, and showed high adsorption rate and the good selectivity for $CO_2$ under the ambient pressure. The ACF with high surface area showed short mass transfer zone and long breakthrough time and, its adsorption capacity depended on the microporosity. Compared with single component adsorption, the amount adsorbed $CO_2$ on ACF increased by the roll-up of $CH_4$ in mixed gases. The adsorption selectivity increased as now rate and $CO_2$ concentration of mixed gases increased, showing 5.2 selectivity for 75% $CO_2$ concentration.

Manufacturing and Thermal Process Optimization of Ag-paste for Fabricating High Efficiency Mono-Si Solar Cell (고효율 단결정 Si 태양전지 제작을 위한 은 페이스트의 제조 및 열 공정 최적화)

  • Pi, Ji-Hee;Kim, Sung-Jin;Son, Chang-Rok;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • A New Ag-pastes were developed for integrating the high efficiency mono-Si solar cell. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 3 wt% additives. After fabricating the Ag-pastes by using a 3-roll mill, they were coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. And the post-thermal process was also optimized by varying the process conditions of peak temperature. The optimized solar cell efficiency on a 6-inch mono-Si wafer was 18.28%, which was the one of the world best performances. It meaned that the newly developed Ag-paste could be adopted to fabricate a commercial bulk Si solar cell.