• 제목/요약/키워드: Roll material

검색결과 315건 처리시간 0.024초

판재의 편평도 향상을 위한 교차압연에 관한 연구 (A Study on the Cross Rolling for Improvement of Flatness of Plate)

  • 남경오;서기석;노병래;홍성인
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.43-48
    • /
    • 2005
  • The production of metal strip with uniform thickness and flatness are two important problems associated thin strip rolling. The thickness and flatness of strip are affected by the flattening of contact surface between strip and roll, the elastic recovery and the bending of roll. Especially, the flatness of the strip is greatly affected by bending deflection of roll. The roll must be designed considered the elastic deformation of roll. This study describes the measurement of thickness and flatness of strip and shows the crown roll for producing flat strip. But it is difficult to produce the crown roller. The cross rolling that is a simple method which can produce the flat strip is introduced and it is found the optimal cross angle for improvement of flatness of plate. These problems are solved by the MARC code on the basis of elastic-plastic material and the updated Lagrangian formulation.

Ductile Cast Iron (DCI) 롤의 마모 특성 고찰 및 마모계수 도출을 위한 실험적 연구 (Experimental Study to Examine Wear Characteristics and Determine the Wear Coefficient of Ductile Cast Iron (DCI) Roll)

  • 변상민
    • Tribology and Lubricants
    • /
    • 제33권3호
    • /
    • pp.98-105
    • /
    • 2017
  • A pin-on-disk test is performed to measure the wear volume of a ductile cast iron (DCI) roll when it wears down using a high carbon steel and two alloy steels at different sliding velocities between the roll and the material (steel). Normal pressure is set as constant and test temperatures are 400, 500 and $600^{\circ}C$. In addition, thermal softening behavior of the DCI roll is examined using a high-temperature micro-hardness tester and the surface hardness variation of the DCI roll is expressed in terms of temperature and heating time. Based on experimental data, a wear coefficient used in Archard's wear model for each material is obtained. The wear volume is clearly observed when the test temperature is $400^{\circ}C$ and sliding velocity varies. However, it is not measured at temperatures of $500^{\circ}C$ and $600^{\circ}C$ even with variations in sliding velocity. From the optical photographs of the pin and disk, the abrasive wear is observed at $400^{\circ}C$ clearly, but no at $500^{\circ}C$ and $600^{\circ}C$. At higher temperatures, the pin surface is not smooth and has many tiny caves distributed on it. It is found that wear volume is dependent on the carbon contents rather than alloy contents. Results also reveal that the variations of wear coefficients are almost linearly proportional to the carbon contents of the material.

열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정 (Adjustment of Roll Gap for The Dimension Accuracy of Bar in Hot Bar Rolling Process)

  • 김동환;김병민;이영석
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.96-103
    • /
    • 2002
  • The objective of this study is to adjust the roll gap fur the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes fur round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental from and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

교차롤압연된 Ni-10Cr 합금의 결정립 미세화와 성형성 향상 (Enhancement of Grain Refinement and Formability of Cross-Roll-Rolled Ni-10Cr Alloy)

  • 송국현;김원용;손현택
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.303-308
    • /
    • 2012
  • This study evaluated the enhancement of microstructural and mechanical properties of a cross rolled Ni-10Cr alloy, comparing with conventionally rolled material. Cold rolling was carried out to 90% thickness reduction and the specimens were subsequently annealed at $700^{\circ}C$ for 30 min to obtain a fully recrystallized microstructure. Cross roll rolling was carried out at a tilted roll mill condition of $5^{\circ}$ from the transverse direction in the RD-TD plane. In order to observe the deformed microstructures of the cold rolled materials, transmission electron microscopy was employed. For annealed materials after rolling, in order to investigate the grain boundary characteristic distributions, an electron back-scattering diffraction technique was applied. Application of cold rolling to the Ni-10Cr alloy contributed to notable grain refinement, and consequently the average grain size was refined from 135 ${\mu}m$ in the initial material to 9.4 and 4.2 ${\mu}m$ in conventionally rolled and cross rolled materials, respectively, thus showing more significantly refined grains in the cross rolled material. This refined grain size led to enhanced mechanical properties such as yield and tensile strengths, with slightly higher values in the cross rolled material. Furthermore, the <111>//ND texture in the CRR material was better developed compared to that of the CR material, which contributed to enhanced mechanical properties and formability.

아연-0.2%알루미늄합금 용융도금액 중에서 용사층의 내구성에 관한 연구 (A Study on Durability of Sprayed Coating Layer in the Molten Zn-0.2% Al Alloy Bath)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • 제19권5호
    • /
    • pp.512-519
    • /
    • 2001
  • Sink roll has been used in molten Zn-0.2%Al alloy bath of continuous galvanizing line in sinking and stabilizing process of the steel strip in molten metal bath. In this process, although the scraper scraps off the sink roll surface, the dross compounds is builded up on the sink roll surface and the life time of the sink roll is shorten by the dross compounds. The present study was investigated the application of the spray coating layer on sink roll body for improving durability In molten Zn-0.2%Al alloy. Through the durability tests in molten Zn-0.2%Al alloy with various ceramic and cermet coating layer, the optimum bond and top coating material was obtained. As the results, the system of STS430F base metal, WC-l7Co bond and $ZrO_2-SiO_2$ top coating was clarified to be the best quality of durability in molten Zn-0.2%Al alloy.

  • PDF

속도계를 이용한 스키드 마크로 인한 두께 변동량 추정 (Estimation of thickness variation due to skid mark Using Speedometer)

  • 이영교;조성은;김상우;홍성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.40-40
    • /
    • 2000
  • Generally a RF AGC controls the roll gap using the variation of rolling force caused by the roll eccentricity and the entry thickness of material, but these can not be classified. The Feed- forward AGC method, which controls the next stand roll 9ap by estimation the skid mark of the previous stand output thickness is needed to supplement the shortage of RF AGC. In this paper, an improved filtering method of skid mark which take account of the kinds of materials, the final objective thickness and the roll speed is proposed, In addition, an improved estimation method of control point using the speedometer and looper angle is suggested, Via simulation, the performance improvement of the suggested FF AGC method is verified.

  • PDF

용탕직접압연공정의 초기조건예측 및 냉각로울 설계 (A Cooling Roll Design and Prediction of Initial Conditions for Direct Rolling Process of Molten Metal)

  • 강충길;김영도
    • 소성∙가공
    • /
    • 제4권3호
    • /
    • pp.233-244
    • /
    • 1995
  • Rolling force in the direct rolling(or twin-roll strip continuous casting) process fo semi-solid material has been computed using rigid-viscoplastic finite element method. Temperature distributions for calculations of rolling force and roll deformation are obtained from thermofluid analysis. Three dimensional roll deformation analysis has also been performed by using commercial package ANSYS. From the results, behavior of metal flow, rolling force and roll deformation have been investigated according to the process conditions of semi-solid direct rolling.

  • PDF

압연 설비 설계를 위한 봉재 압연의 롤 패스 설계 시스템 (Roll Pass Design System for Round Bars to Design Rolling Equipment)

  • 윤성만;박승희;신상엽
    • 소성∙가공
    • /
    • 제9권2호
    • /
    • pp.112-119
    • /
    • 2000
  • The roll Pass design is one of the most important processes to design the whole equipment of the rods and bars rolling system. In this study, the roll pass design program named TollRo(Rolling Factory Organizer) was developed. conventional methods to design roll pass were analyzed and a new algorithm to design the dimension of the intermediate groove was introduced. Object oriented programming technology was implemented in this design program. It comprises GUI(Graphic User Interface), function of automatic pass design, function of modifying pass schedule and database of material properties. The developed program can be used to design roll pass with consistency for the rods and bars rolling system. The man-hours for the whole design can be drastically reduced. The design parameters of rolling system can be extracted quickly by this program.

  • PDF

Deformation Analysis of Roll Mold for Nano-flexible Devices

  • Khaliq, Amin;Tahir, Usama;Jeong, Myung Yung
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.47-50
    • /
    • 2021
  • Nanoimprint lithography (NIL) has revolutionized the fabrications of electronics, photonics, optical and biological devices. Among all the NIL processes, roll-to-roll nanoimprinting is regarded best for having the attributes of low cost, continuous, simple, and energy-efficient process for nanoscale device fabrication. However, large-area printing is limited by the master mold deformation. In this study, a finite element model (FEM) has been constructed to assess the deformation of the roll mold adhesively wrapped on the carbon fiber reinforced material (CFRP) base roll. This study also optimizes the deformations in the metallic roll mold with respect to nip-forces applied in the printing process of nano-fabrication on large scale. The numerical simulations were also conducted to evaluate the deflection in roll mold assembly due to gravity. The results have shown decreasing trend of the deformation with decreasing nip-force. Also, pressure uniformity of about 40% has been optimized by using the current numerical model along with an acceptable deflection value in the vertical axis due to gravity.