• Title/Summary/Keyword: Roll Gap Control

Search Result 44, Processing Time 0.021 seconds

Improvement of Mass Flow and Thickness Accuracy in Hot Strip Finishing Mill

  • Lee, Man-Hyung;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.73.3-73
    • /
    • 2001
  • Finishing mill (FM) is set up with rolling conditions (rolling speed, rolling force, roll gap, etc.) calculated by a FSU (Finisher Setup) model considering the temperature, qualities and size of a transfer bar and a strip at the entry and exit of FM before the transfer bar is rolled through FM. If the accuracy of setup is low mass flow unbalance occurs, so that the accuracies of the strip thickness and width become lower or rolling operation fault occurs. Therefore, to enhance the performance of the FSU model and to improve mass flow and the thickness accuracy of a strip in the 7-stand finishing mill using a hot strip speed measurement system. This study is being performed. In this paper, the speed measurement system, a developed neural network for predicting ...

  • PDF

An adaptive fuzzy control for closed-die ring-rolling process ("Ring 생산 Control System의 퍼지 적응제어")

  • 이용현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1476-1479
    • /
    • 1996
  • The ring rolling process is one of the best known ring production method. The present model based control system was designed for rings with rectangle cross-section yet. An Adaptive Fuzzy Control for Closed-Die Ring-Rolling was developed in order to enhance the flexibility of the radial-axial ring rolling machine and to produce the rings with highly complex cross-section profile, roller bearing rings. A fuzzy method was implemented because of its simple application and to utilize the known process knowledge. The quality of the control system was estimated by die filling grad, which is strong dependent on the rising time of the controller. The rolling process parameters were also varied to determine their influence on filling of the ring profile. Die filling met the requirement of the industry.

  • PDF

Design of Levitation and Propulsion Controller for Magnetic Levitated Logistic Transportation System (자기부상 물류이송시스템의 부상 및 추진제어기 설계)

  • Choi, Dae-Gyu;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.106-112
    • /
    • 2017
  • In the paper, we propose a levitation and a propulsion controller for the magnetic levitation logistic transportation system. The levitation controller is designed considering the mutual influence of the electromagnets to minimize roll and pitch movements. In order to solve the structural disadvantages of the magnetic levitation transportation system, we improve the problem of the existing controller by applying the exponential filter to the reference input. DSP-based control hardware is developed and the levitation control method is verified by levitation experiments to the air gap goal. The propulsion controller uses the space vector voltage modulation method. The propulsion controller is designed to follow the position and velocity profile by detecting the absolute position from the bar code information attached to the rail. The position control result shows satisfactory performance through the propulsion control reciprocating motion experiment.

A Model for Detection and Refinement of Fixed Bending Regions for Improving the Degree of Thickness Uniformity in Rolled Film Manufacturing (롤 형상 필름 생산에서 두께평활도 개선을 위한 고정굴곡부 발현 모형 및 개선 모델)

  • Bae, Jae-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.21-28
    • /
    • 2015
  • As film products are increasingly used in a wide range of areas, from producing traditional flexible packaging to high-tech electronic products, a higher level of quality is demanded. Most film products are made in the form of rolled finished goods, therefore, various quality issues related to their shape characteristics must be addressed. The thickness of the film products is one of the most common and important critical-to-quality attributes (CTQs). Particularly, the degree of thickness uniformity is more important than other thickness parameters, because it will be potential causes of many secondary thickness-related quality problems, such as wrinkles or faulty windings. To control the degree of thickness uniformity, the fixed bending region is oneof the most important CTQs to manage. Fixed bending regions are special points in the transverse direction of a rolled product with consistent minute variations of the thickness gap. This paper describes the measurement and analysis of thickness uniformity data, which were performed in a real manufacturing field of biaxial oriented polypropylene (BOPP) film. In previous researches, quality function deployment (QFD) or fault tree analysis were used to find the most critical process attributes out to controlthe CTQ of thickness uniformity. Whereas, this paper uses traditional control charts to find the most critical process attributes out in this problem. In addition, the selection of one of the major critical process attributes (CTPs) that is expected to affect the CTQ of thickness uniformity is also described. The selected critical-to-process attributes are the controlled temperatures along the transverse direction. A dramatic improvement in thickness uniformity was observed when the selected CTPs were controlled.