• Title/Summary/Keyword: Rod coating

Search Result 57, Processing Time 0.023 seconds

Research on the Development of Inline Phosphate Coating Process Technology to Secure the Properties of Parts for Power Transmission Machinery (동력전달용 기계부품의 물성 확보를 위한 인라인 인산염 피막처리 공정기술개발)

  • Kim, Deok-Ho;Ku, Young-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.199-208
    • /
    • 2022
  • The steel wire or steel bar processing process applied to the manufacture of various bolts and power transmission shafts was improved by applying in-line phosphate film treatment technology. By applying a polymer lubricant for a non-reactive metal forming process and a non-reactive non-phosphorus lubricating coating agent, the film formation for each process time was comparatively analyzed and reviewed. Compared to the nine processes applied previously, the in-line phosphate film treatment technology applied with only two processes has been effectively improved in terms of reduction of treatment time, reduction of facility installation area, prevention of water pollution due to wastewater, and non-use of ozone-depleting substances. In addition, it was found that it can have an important effect on productivity improvement and price competitiveness from the simplification of quality control and process control as well as improvement of the working environment.

Characterization of Base Paper Properties on Coating Penetration

  • Kim, Bong-Yang;Douglas W. Bousfield
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.17-25
    • /
    • 2003
  • The influence of base paper properties and fiber type on coating penetration was studied in terms of characterization of coating holdout using two types of hand sheets as the base paper which were prepared from thermomechanical pulp (TMP) and hardwood bleached kraft pulp(KP) sized internally with alkyl ketene dimmer (AKD). Laboratory rod draw down coater was used for surface sizing and coating application. Characterization of coating penetration was done by measuring the roughness of the backside of coating layer. The backside of the coating was exposed by dissolving the fibers in a solution of cupriethylenedimine (CEO). Data show that internal sizing of base paper is effective and surface sizing is more effective to prevent coating penetration. Comparing between the two types of base papers, backside roughness of coating layer of TMP sheet is much larger and sizing is more effective to reduce coating penetration than those of KP sheet. From the result of water absorption and sizing degree after surface sizing, it seems that internal sizing slows down molecular diffusion much more than capillary penetration, but surface sizing reduces the capillary penetration. Furthermore, predominant mechanism of water into paper of TMP sheet seems to be capillary penetration, but it is molecular diffusion in the case of KP sheet.

Minimization of Porosity in Ceramic Coating on a Hydraulic Cylinder (유압실린더 세라믹코팅 기공률 최소화 방안)

  • Jung, Youngho;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.6 no.4
    • /
    • pp.63-71
    • /
    • 2010
  • The best way to prevent the corrosion of piston rod is a selection of quality of the material and method of construction which minimize the porosity. The high velocity oxy fuel(HVOF) method, which generates lower porosity than existing plasma spray, was applied to ceramic laminated bond layer. Porosity percentage fell to bellow 2%, lower than that of plasma spray at 7%. Coating material of ceramic-coated main layer was selected as the $Cr_2O_3$ affiliation material, which is more dense than $Al_2O_3$ affiliation. To fill up the pores formed after the coating process, we sealed the bond layer and main layer. Sealing process was performed twice, once after the coating and once after the grinding. Upon the anti-corrosion test on the sealed sample and on the non-sealed sample, it is confirmed that the sealed sample was not corroded for 1,000 hours while the non-sealed sample was corroded within 48 hours.

  • PDF

A Study on Quality Improvement for the Prevention of Water Infiltration and Corrosion of Helicopter MRA Control-Rod (회전익 항공기 MRA 조종로드 방수 및 부식 방지에 관한 연구)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.92-100
    • /
    • 2017
  • The Helicopter MRA Control Rod System has the important function of controlling the speed, height, and direction of helicoptersby adjusting the main rotor disc. However, the ingress of water into the inner control rod can cause ice damage in the rod during winter operation and also corrosion;these defects need to be rectified. The water flowed into the control rod through the upper side space, and the rod was cracked during icing expansion occurring at low temperature. The corrosion occurred due to the lack of coating process during the manufacturing process. To resolve these problems, the upper rod was sealed to prevent water inflow and a coating process was added to prevent corrosion. These solutions were verified by awaterproof test and a salt fog test. The phenomena, causes and measures were reviewed and the methods of improvement were established and proven. This proposed technology to prevent water infiltration and corrosion will contribute to the safety of rotary wing aircraft.

Anti-fouling Properties of Functional Coating according to the Film Thickness and its Application to the Insulators for Electrical Railway (코팅막의 두께에 따른 기능성 코팅의 내오염 특성 분석 및 전기철도용 애자로의 활용)

  • Shan, Bowen;Kang, Hyunil;Choi, Wonseok;Kim, Jung Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.94-97
    • /
    • 2017
  • A method of improving the anti-fouling characteristics of porcelain insulators was proposed in this study. Functional coating was performed as a method of reducing the surface contamination of the porcelain insulators. The functional coating was applied on a ceramic substrate, which has the same material as the porcelain insulators. After coating the ceramic substrate 2, 3, 4, and 5 times alternately in the horizontal and vertical directions, the surface characteristics according to the thickness of the coating film were analyzed. The optimal process was selected to coat the surfaces of the post insulators and long rod insulators, which are the representative porcelain insulators. After coating, heat treatment was performed for 1 hour at $200^{\circ}C$ in a furnace to secure the durability of the coating film. Compared to the uncoated insulators, the insulators with the functional coating showed significantly improved anti-fouling characteristics as well as excellent adhesion to the coated insulator surface.

Multi Layer Coating에서의 품질 영향인자에 대한 고찰

  • 김영권;곽상효;이경현;정종국
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.04a
    • /
    • pp.78-78
    • /
    • 2001
  • 현재 Lab Coating은 실험의 정확성 및 재현성을 위해 기존의 Hand Coating에서 탈피하여 Mayor Coater나 CLC(Cylindrical Laboratory Coated) 등을 사용하여 주로 진행된다. Lab Coater로는 현재 가장 진보된 장비라고 할 수 있는 CLC의 경우 속도와 metering 방식 등에서 현장과 유사한 조건을 재현할 수 있다. 그러나 CLC를 사용하여 Multi Layer C Coating을 실시할 경우 원하는 도공량을 얻기 위해서는 상당한 시간과 노력이 필요하며 특히 Triple Coating의 경 우는 더 힘 든 과정 을 거 쳐 야 한다. 그래서 본 연구에서는 도공량 변화 및 Color Formulation 변경에 의한 물성변화를 측정 하여 Triple Coating에서 두 인자가 각각의 품질에 미치는 영향을 비교 분석하여 어느 정도 도공량 변화가 Color Formulation 변화에 상응하는 영향을 주는지를 파악하고자 하였다.코팅은 CLC 6000을 이용하여 실시하였으며, rod와 blade를 사용한 Triple coating을 5가 지 경우의 Color Formulation에 대하여 실시하였다. 변화시켜 코팅한 후 도공량에 따른 백지물성 관계를 분석한 결과 백색도, 평활도, 거칠음도, 투 기도,2도 trap, Set-Off, Dr${\gamma}$ pick은 총도공량과 강한 상관관계를 보였고, 광택도와 K&N은 총도공량보다는 Top 코팅량과 강한 상관 관계를 보였다. 동일한 코팅칼라를 이용하여 인쇄물성을 고찰하였다. 도공량과 물성의 그러나 동일한 코팅칼라를 사용하여 얻어진 일련의 상관성은 Color Formulation이 변경 되었을 경우 전혀 발견할 수 없었다. 즉 Triple Coating에서 코팅칼라 변경이 품질에 미치는 영향은 도공량 변화에 비해 절대적이어서 몇십%의 현을 억제하지는 못한다는 결론을 도출할 수 있었다.

  • PDF

EXPERIMENTAL INVESTIGATION OF FRETTING BEHAVIOR OF TiAlN COATED NUCLEAR FUEL ROD CLADDING MATERIALS

  • Kim, T.H.;Kim, S.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.185-186
    • /
    • 2002
  • Fretting of fuel rod cladding material, Zircaloy-4 tube, in PWR nuclear power plants must be reduced and avoided. Nowadays the introduction of surface treatments or coatings is expected to be an ideal solution to fretting damage since fretting is closely related to wear. corrosion and fatigue. Therefore. in this study the fretting wear experiment was performed using TiAlN coated Zircaloy-4 tube as the fuel rod cladding and uncoated Zircaloy-4 as on of grids, especially concentrating on the sliding component. Fretting wear resistance of TiAlN coated Zircaloy-4 tubes was improved compared with that of TiN coated tubes and uncoated tubes and fretting wear mechanisms were brittle fracture and plastic flow at lower slip amplitude but severe oxidation and spallation of oxidative layer at higher ship amplitude.

  • PDF

Zinc oxide seed layer 형성 조건 제어를 통한 나노 구조체 형상 조절 연구

  • Lee, Jae-Hyeok;Kim, Seong-Hyeon;Lee, Gyeong-Il;Lee, Cheol-Seung;Jo, Jin-U;Kim, Seon-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.386-386
    • /
    • 2011
  • sol-gel 및 hydrothermal growth method를 이용한 zinc oxide nanorod는 제작 시 고가의 장비가 필요치 않기에 저비용 대면적 박막을 제작하는데 적합하지만 rod들의 array 및 density 조절에서 어려움을 가지고 있다. 본 연구에서는 이러한 nanorod array 형상 조절을 위하여 zinc oxide seed layer 형성 과정 중 precursor solution에 이종 나노 입자를 첨가하였다. 첨가한 seed precursor solution을 spin coating한 이후에 후처리 하여 hydrothermal method를 이용해 성장시켰다. 합성한 rod들을 optic과 FE-SEM으로 측정해 rod들의 density 변화를 확인할 수 있었다.

  • PDF

Thickness measurements of a Cr coating deposited on Zr-Nb alloy plates using an ECT pancake sensor

  • Jeong Won Park;Bonggyu Ji;Daegyun Ko;Hun Jang;Wonjae Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3260-3267
    • /
    • 2023
  • Zr-Nb alloy have been widely used as fuel rods in nuclear power plants. However, from the Fukushima nuclear accident, the weakness of the rod was revealed under harsh conditions, and research on the safety of these types of rods was conducted after the disaster. The method of depositing chromium onto the existing Zr-Nb alloy fuel rods is being considered as a means by which to compensate for the weakness of Zr-Nb alloy rods because chromium is strong against oxidation at high temperatures and has high strength. In order to secure these advantages, it is important to maintain the Cr thickness of the rods and properly inspect the rods before and during their use in power generation. Eddy current testing is a typical means of evaluating the thickness of thin metals and detecting surface defects. Depending on the size and shape of the inspected object, various eddy current sensors can be applied. In particular, because pancake sensors can be manufactured in very small sizes, they can be used for inspections even in narrow spaces, such as a nuclear fuel assembly. In this study, an eddy current technique was developed to confirm the feasibility of Cr coating thickness evaluations. After determining the design parameters of the pancake sensor by means of a FEM simulation, a FPCB pancake sensor was manufactured and the optimal frequency was selected by measuring minute changes in the Cr-coating thickness using the developed sensor.

High Rate Deposition System by Inductively Coupled Plasma Assisted Sputter-sublimation (유도 결합 플라즈마 스퍼터 승화법을 이용한 고속증착 시스템)

  • Choi, Ji-Sung;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • A sputter-sublimation source was tested for high rate deposition of protective coating of PEMFC(polymer electrolyte membrane fuel cell) with high electrical conductivity and anti-corrosion capability by DC biasing of a metal rod immersed in inductively coupled plasma. A SUS(stainless steel) tube, rod were tested for low thermal conductivity materials and copper for high thermal conductivity ones. At 10 mTorr of Ar ICP(inductively coupled plasma) with 2.4 MHz, 300 W, the surface temperature of a SUS rod reached to $1,289^{\circ}C$ with a dc bias of 150 W (-706 V, 0.21 A) in 2 mins. For 10 min of sputter-sublimation, 0.1 gr of SUS rod was sputter-sublimated which is a good evidence of a high rate deposition source. ICP is used for sputter-sublimation of a target material, for substrate pre-treatment, film quality improvement by high energy particle bombardment and reactive deposition.