• 제목/요약/키워드: Rocking mechanism

검색결과 11건 처리시간 0.026초

Some practical considerations in designing underground station structures for seismic loads

  • Gu, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.491-500
    • /
    • 2015
  • Under seismic loading, underground station structures behave differently from above ground structures. Underground structures do not require designated energy dissipation system for seismic loads. These structures are traditionally designed with shear or racking deformation capacity to accommodate the movement of the soil caused by shear waves. The free-field shear deformation method may not be suitable for the design of shallowly buried station structures with complex structural configurations. Alternatively, a station structure can develop rocking mechanisms either as a whole rigid body or as a portion of the structure with plastic hinges. With a rocking mechanism, station structures can be tilted to accommodate lateral shear deformation from the soil. If required, plastic hinges can be implemented to develop rocking mechanism. Generally, rocking structures do not expect significant seismic loads from surrounding soils, although the mechanism may result in significant internal forces and localized soil bearing pressures. This method may produce a reliable and robust design of station structures.

수평반복하중 실험을 이용한 근입된 얕은 기초의 회전거동 메커니즘 평가 (Evaluation of Rocking Mechanism for Embedded Shallow Foundation via Horizontal Slow Cyclic Tests)

  • 고길완;하정곤;박헌준;김동수
    • 한국지반공학회논문집
    • /
    • 제32권8호
    • /
    • pp.47-59
    • /
    • 2016
  • 얕은 기초의 회전거동은 지진 시 상부 구조물의 지진하중을 줄이는 효과적인 방법으로 대두되고 있다. 그러나 회전거동의 메커니즘에 대한 이해부족과 항복거동으로 인한 지반변형 때문에 시공에 적용되지 못하고 있다. 본 연구에서는 원심모형실험을 이용한 수평반복하중 실험을 통해 세장비가 다른 시스템의 근입된 얕은 기초의 회전거동 특성을 평가하였다. 실험결과를 통해 기초의 회전거동으로 인한 하부지반면의 원형현상을 관찰하였으며, 이로 인해 기초의 최대 전도모멘트가 기초의 극한 모멘트 지지력과 같아지는 것을 알 수 있었다. 기초 저면에서 관측된 토압변화를 통해 항복거동으로 인한 수평거동과 회전거동의 연결(coupling)과 분리(decoupling)현상을 볼 수 있었다. 또한 기초의 회전각이 증가할수록 지반의 비선형성과 에너지 감쇠가 커짐을 알 수 있었고, 근입된 기초의 극한 모멘트 지지력이 지표면에 놓인 기초의 극한 모멘트 지지력보다 더 커지는 것을 확인하였다. 본 연구를 통해 기초의 회전거동을 이용한 내진 설계 시 보다 정확하고 적절한 기초의 극한 모멘트 지지력을 제시할 수 있을 것이라 판단된다.

Rocking behavior of bridge piers with spread footings under cyclic loading and earthquake excitation

  • Hung, Hsiao-Hui;Liu, Kuang-Yen;Chang, Kuo-Chun
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1001-1024
    • /
    • 2014
  • The size of spread footings was found to be unnecessarily large from some actual engineering practices constructed in Taiwan, due to the strict design provisions related to footing uplift. According to the earlier design code in Taiwan, the footing uplift involving separation of footing from subsoil was permitted to be only up to one-half of the foundation base area, as the applied moment reaches the value of plastic moment capacity of the column. The reason for this provision was that rocking of spread footings was not a favorable mechanism. However, recent research has indicated that rocking itself may not be detrimental to seismic performance and, in fact, may act as a form of seismic isolation mechanism. In order to clarify the effects of the relative strength between column and foundation on the rocking behavior of a column, six circular reinforced concrete (RC) columns were designed and constructed and a series of rocking experiments were performed. During the tests, columns rested on a rubber pad to allow rocking to take place. Experimental variables included the dimensions of the footings, the strength and ductility capacity of the columns and the intensity of the applied earthquake. Experimental data for the six circular RC columns subjected to quasi-static and pseudo-dynamic loading are presented. Results of each cyclic loading test are compared against the benchmark test with fixed-base conditions. By comparing the experimental responses of the specimens with different design details, a key parameter of rocking behavior related to footing size and column strength is identified. For a properly designed column with the parameter higher than 1, the beneficial effects of rocking in reducing ductility and the strength demand of columns is verified.

A half-century of rocking isolation

  • Makris, Nicos
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1187-1221
    • /
    • 2014
  • The uplifting and rocking of slender, free-standing structures when subjected to ground shaking may limit appreciably the seismic moments and shears that develop at their base. This high-performance seismic behavior is inherent in the design of ancient temples with emblematic peristyles that consist of slender, free-standing columns which support freely heavy epistyles together with the even heavier frieze atop. While the ample seismic performance of rocking isolation has been documented with the through-the-centuries survival of several free-standing ancient temples; and careful post-earthquake observations in Japan during the 1940's suggested that the increasing size of slender free-standing tombstones enhances their seismic stability; it was George Housner who 50 years ago elucidated a size-frequency scale effect that explained the "counter intuitive" seismic stability of tall, slender rocking structures. Housner's 1963 seminal paper marks the beginning of a series of systematic studies on the dynamic response and stability of rocking structures which gradually led to the development of rocking isolation-an attractive practical alternative for the seismic protection of tall, slender structures. This paper builds upon selected contributions published during this last half-century in an effort to bring forward the major advances together with the unique advantages of rocking isolation. The paper concludes that the concept of rocking isolation by intentionally designing a hinging mechanism that its seismic resistance originates primarily from the mobilization of the rotational inertia of its members is a unique seismic protection strategy for large, slender structures not just at the limit-state but also at the operational state.

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.

Mechanical properties of reinforced-concrete rocking columns based on damage resistance

  • Zhu, Chunyang;Cui, Yanqing;Sun, Li;Du, Shiwei;Wang, Xinhui;Yu, Haochuan
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.737-747
    • /
    • 2021
  • The objective of seismic resilience is to maintain or rapidly restore the function of a building after an earthquake. An efficient tilt mechanism at the member level is crucial for the restoration of the main structure function; however, the damage resistance of the members should be the main focus. In this study, through a comparison with the classical Flamant theory of local loading in the elastic half-space, an elastomechanical solution for the axial-stress distribution of a reinforced-concrete (RC) rocking column was derived. Furthermore, assuming that the lateral displacement of the rocking column is determined by the contact surface rotation angle of the column end and bending and shear deformation of the column body, the load-lateral displacement mechanical model of the RC rocking column was established and validated through a comparison with finite-element simulation results. The axial-compression ratio and column-end strength were analyzed, and the results indicated that on the premise of column damage resistance, simply increasing the axial-compression ratio increases the lateral loading capacity of the column but is ineffective for improving the lateral-displacement capacity. The lateral loading and displacement of the column are significantly improved as the strength of the column end material increases. Therefore, it is feasible to improve the working performance of RC rocking columns via local reinforcement of the column end.

Development of self-centring energy-dissipative rocking columns equipped with SMA tension braces

  • Li, Yan-Wen;Yam, Michael C.H.;Zhang, Ping;Ke, Ke;Wang, Yan-Bo
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.611-628
    • /
    • 2022
  • Energy-dissipative rocking (EDR) columns are a class of seismic mitigation device capable of dissipating seismic energy and preventing weak-story failure of moment resisting frames (MRFs). An EDR consists of two hinge-supported steel columns interconnected by steel dampers along its height. Under earthquakes, the input seismic energy can be dissipated by plastic energy of the steel dampers in the EDR column. However, the unrecoverable plastic deformation of steel dampers generally results in residual drifts in the structural system. This paper presents a proof-of-concept study on an innovative device, namely self-centring energy-dissipative rocking (SC-EDR) column, aiming at enabling self-centring capability of the EDR column by installing a set of shape memory alloy (SMA) tension braces. The working mechanism of the SC-EDR column is presented in detail, and the feasibility of the new device is carefully examined via experimental and numerical studies considering the parameters of the SMA bar diameter and the steel damper plate thickness. The seismic responses including load carrying capacities, stress distributions, base rocking behaviour, source of residual deformation, and energy dissipation are discussed in detail. A rational combination of the steel damper and the SMA tension braces can achieve excellent energy dissipation and self-centring performance.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Evaluation of Macroporous and Microporous Carriers for CHO-K1 Cell Growth and Monoclonal Antibody Production

  • Rodrigues, Maria Elisa;Costa, Ana Rita;Fernandes, Pedro;Henriques, Mariana;Cunnah, Philip;Melton, David W.;Azeredo, Joana;Oliveira, Rosario
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1308-1321
    • /
    • 2013
  • The emergence of microcarrier technology has brought a renewed interest in anchorage-dependent cell culture for high-yield processes. Well-known in vaccine production, microcarrier culture also has potential for application in other fields. In this work, two types of microcarriers were evaluated for small-scale monoclonal antibody (mAb) production by CHO-K1 cells. Cultures (5 ml) of microporous Cytodex 3 and macroporous CultiSpher-S carriers were performed in vented conical tubes and subsequently scaled-up (20 ml) to shake-flasks, testing combinations of different culture conditions (cell concentration, microcarrier concentration, rocking methodology, rocking speed, and initial culture volume). Culture performance was evaluated by considering the mAb production and cell growth at the phases of initial adhesion and proliferation. The best culture performances were obtained with Cytodex 3, regarding cell proliferation (average $1.85{\pm}0.11{\times}10^6$ cells/ml against $0.60{\pm}0.08{\times}10^6$ cells/ml for CultiSpher-S), mAb production ($2.04{\pm}0.41{\mu}g/ml$ against $0.99{\pm}0.35{\mu}g/ml$ for CultiSpher-S), and culture longevity (30 days against 10-15 days for CultiSpher-S), probably due to the collagen-coated dextran matrix that potentiates adhesion and prevents detachment. The culture conditions of greater influence were rocking mechanism (Cytodex 3, pulse followed by continuous) and initial cell concentration (CultiSpher-S, $4{\times}10^5$ cells/ml). Microcarriers proved to be a viable and favorable alternative to standard adherent and suspended cultures for mAb production by CHO-K1 cells, with simple operation, easy scale-up, and significantly higher levels of mAb production. However, variations of microcarrier culture performance in different vessels reiterate the need for optimization at each step of the scale-up process.

수직 Bridgman법에 의한 InSe 단결정의 성장 및 Sn이 첨가된 InSe에서 Zn의 확산에 잔한 연구 (A study on the growth of undoped-lnSe single crystal by vertical Bridgman method and Zn diffusion in Sn-doped InSe)

  • 정회준;문동찬;김선태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.464-467
    • /
    • 1999
  • The undoped-InSe and Sn-doped InSe single crystals were grown by vertical Bridgman method and their properties were invesigated. The orientations and the crystallinites of these crystals were identified by X-ray diffraction(XRD), double crystal rocking curve(DCRC) and etch-pit density(EPD) measurements. From the Raman spectrum at room temperature, TO, LO modes and together with their overtones and combinations were observed. Optical properties were inves ated by PL at 12K and direct band gap of these crystals obtained from optical absorption spectrum. Compared with undo&-InSe, electrical properties of Sn-doped InSe were increased and the electrical conductivity type were n-type. But electrical properties along growth direction of crystals and radial direction of wafer showed nearly uniform distribution. The Zn diffusion mechanism in InSe could be explained by interstitial-substitutional and vacancy complex models and the activation energy of 1.15-3.01eV were needed for diffusion.fusion.

  • PDF