• Title/Summary/Keyword: Rockfill material

Search Result 52, Processing Time 0.02 seconds

Evaluation of Empirical Design Factors of Coarse Grained Material through Large Scale Shear Test (대형전단시험을 통한 댐제체용 조립재료의 경험적 설계정수에 대한 평가)

  • Oh, Gi-Dae;Kim, Kyoung-Yul;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.777-783
    • /
    • 2006
  • The coarse grained materials are used in various construction field such as express way back fill, Dam etc. Especially, for dam construction, a huge mount of rock fill materials are needed, so around domestic stony mountains are generally developed to produce materials. Not an accurate theory, but design criteria is based on empirical factors that were constructed in advance for design of dam especially Concrete Face Rockfill Dam(CFRD). Considering the post facts, the modified design criteria are essential in the future with more theoretical and experimental ways. In this study, large scale direct shear tests are performed with various relative density conditions on coarse grained material of Yecheon area to compare test results and general CFRD design factors.

  • PDF

Mix Proportions of Concrete for Roller Compacted Concrete Dam Application (롤러다짐 댐 콘크리트의 효율적인 배합비 도출에 관한 연구)

  • Won, Jong-Pil;Yoon, Jong-Hwan;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • Roller-compacted concrete(RCC) dam have gained acceptance worldwide in a relatively short time due to their low cost, which is derived in part from their rapid method of construction. And RCC has recently emerged as an economically attractive material for dam construction, replacing the use of conventional concrete and even challenging the economics of earthfill and rockfill embankment dams. There are existing two major mix design methods. one used in USA and the other used in Japan. In this study, proper mix proportions of concrete for RCC dam is obtained using method of compound their merit.

Determination of Coefficient of Variation of Shear Wave Velocity in Fill Dam for Reliability Based Analysis (신뢰성 기반 해석을 위한 국내 필댐 구성 재료의 전단파 속도 변동계수 결정)

  • Park, Hyung-Choon;Oh, Hyun-Ju
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.31-39
    • /
    • 2020
  • Shear wave velocity (or shear modulus) is very important in the evaluation of seismic performance of a fill dam under an earthquake. A shear wave velocity profile can be determined by surface wave method such as HWAW and SASW methods but this profile has uncertainty caused by spatial variation of material property in a fill dam. This uncertainty in shear wave velocity profile could be considered using a coefficient of variation of material property in the reliability based analysis. In this paper, the possible 600 shear wave velocity profiles in the core and rockfill zone of fill dam were generated by the random shear wave velocity profile generation method, proposed by Hwang and Park, based on the field shear wave velocity profiles determined by the HWAW and SASW methods. And, through the statistical analysis of generated shear wave velocity profiles in the fill dam, the coefficient of variation (COV) of shear wave velocity with depth were evaluated for the core and rock filled zone of fill dam in Korea.

Numerical Simulation for Evaluation the Feasibility of Using Sand and Gravel Contaminated by Heavy Metals for Dam Embankment Materials (중금속으로 오염된 사력재의 댐축조 재료 활용 가능성 평가를 위한 수치 모델링)

  • Suk, Hee-Jun;Seo, Min-Woo;Kim, Hyoung-Soo;Lee, Jeong-Min
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.209-221
    • /
    • 2007
  • Numerical analysis was performed to investigate the effect of heavy metal contamination on neighboring environment in case a dam is constructed by using rockfill materials contaminated by heavy metals. The numerical simulation carried out in this research includes both subsurface flow and contaminant transport in the inside of the CFRD(Concrete Faced Rockfill Dam), using two commercial programs, SEEP2D and FEMWATER. The three representative cases of scenarios were chosen to consider a variety of cases occurring in a dam site; (1) Scenario 1 : no crack in the concrete face slab, (2) Scenario 2 : a crack In the upper part of face slab, and (3) Scenario 3 : a crack between plinth and face slab in the lower part of face slab. As a result of seepage analysis, the amount of seepage in scenario 2 was calculated as $14.31\sim14.924m^3/day$ per unit width, corresponding to the 1,000 times higher value than that in other scenarios. Also, in the simulation of contaminant transport by using FEMWATER, specified contaminant concentration of 13 ppb in main rockfill zone was set to consider continuous leakage from the rock materials. Through the analysis of contaminant transport, we found that elapsed times to take for the contaminant concentration of about 2 ppb to arrive at the end of a dam are as follows. Scenario 1 has the elapsed time of 55,000 years. In Scenario 2. it is 50 years. Finally, scenario 3 has 27,000 years. The rapid transport of the contaminant in scenario 2 was attributed to greater seepage flow by 500 times than other scenarios. Although, in case of upper crack in the face slab, it was identified that the contaminant might transport to the end of a dam within 100 years with about 2 ppb concentration, however, it happened that the contaminant was hardly transported out of the dam in other scenarios, which correspond to either no crack or a crack between plinth and face slab. In conclusion, the numerical analysis showed that the alternative usage of the contaminated sand and gravel as the dam embankment material can be one of the feasible methods with the assumption that the cracks in a face slab could be controlled adequately.

Evaluating effects of various water levels on long-term creep and earthquake performance of masonry arch bridges using finite difference method

  • Cavuslu, Murat
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.31-52
    • /
    • 2022
  • Investigating and evaluating the long-term creep behavior of historical buildings built on seismic zones is of great importance in terms of transferring these structures to future generations. Furthermore, assessing the earthquake behavior of historical structures such as masonry stone bridges is very important for the future and seismic safety of these structures. For this reason, in this study, earthquake analyses of a masonry stone bridge are carried out considering strong ground motions and various water levels. Tokatli masonry stone arch bridge that was built in the 10th century in Turkey-Karabük is selected for three-dimensional (3D) finite difference analyses and this bridge is modeled using FLAC3D software based on the three-dimensional finite difference method. Firstly, each stone element of the bridge is modeled separately and special stiffness parameters are defined between each stone element. Thanks to these parameters, the interaction conditions between each stone element are provided. Then, the Burger-Creep and Drucker-Prager material models are defined to arch material, rockfill material for evaluating the creep and seismic failure behaviors of the bridge. Besides, the boundaries of the 3D model of the bridge are modeled by considering the free-field and quiet boundary conditions, which were not considered in the past for the seismic behavior of masonry bridges. The bridge is analyzed for 6 different water levels and these water levels are 0 m, 30 m, 60 m, 70 m, 80 m, and 90 m, respectively. A total of 10 different seismic analyzes are performed and according to the seismic analysis results, it is concluded that historical stone bridges exhibit different seismic behaviors under different water levels. Moreover, it is openly seen that the water level is of great importance in terms of earthquake safety of historical stone bridges built in earthquake zones. For this reason, it is strongly recommended to consider the water levels while strengthening and analyzing the historical stone bridges.

Analysis of Non-Darcy Flour in Tide Embankment (호안제체에서 Non-Darcy 흐름해석)

  • Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • The simulation results using i- V relationship of non-Darcy flow through tide embankment by Li et al.(1998) agree well to the observed data. The use of i- V relationship is applicable to the engineering practice and the correct input of porosity is necessary. The non-Darcy flow based on the pipe flow and Taylor's definition for mean hydraulics radius in rockfill material is applicable to the block and caisson materials. The correct calculation of flow through tide embankment enables the accurate calculation of velocity at final closing gap and the prediction of inner water level after tide embankment construction as well.

Analysis of the Variation of Earth Pressures and Pore Pressures on the Interfaces of Taechong Composite Dam. (대청복합댐 접합면에 대한 토압 및 간극수압의 변동분석)

  • 임희대;김상규
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.33-44
    • /
    • 1988
  • The Taechong Dam completed in 1980 is a composite dam at which a junction was formed partly by butting the core against the end face of the concrete gravity section and partly by the core overlapping the upstream face of the concrete. In order to evaluate the performance of the junction, the interfaces between the concrete dam and core of the embankment dam were well instrumented with total pressure cells and piezometers. A nonlinear incremental finite element analysis simulating its construction behaviour was carried out under plane strain conditions. Material parameters for the core are determined from triaxial tests on the specimens, sampled in the quarry site and compacted to the field dry density at the field moisture content. Material parameters for the filter, transition materials and the rockfill are estimated from literature. When compared with the earth pressures measured at the interfaces, the analytical results show good agreement in the core, however, there are some discrepancy in the shell. A nonlinear model for pore pressure response is used successfully to predict the pore pressures at the interface in the core.

  • PDF

Centrifuge tests for simulating the behavior of CFRD with increasing water level (수위 상승에 따른 CFRD(콘크리트 표면차수벽형 석괴댐)의 거동 모사 원심모형시험)

  • Seo, Min-Woo;Im, Eun-Sang;Kim, Yong-Seong;Ha, Ik-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.784-793
    • /
    • 2006
  • As the number of CFRD constructions increases, the necessity of an accurate assessment on its behavior also has been increasing accordingly. The performance of concrete faced rockfill dam (CFRD) under different water levels is greatly concerned by dam engineers and designers in the world. However, domestic research on CFRD design and construction has yet been insignificant. This study deals with three centrifuge model tests, mainly investigates the deformation of the concrete faced slabs with different face slab stiffness under different water levels. The prototype of a centrifugal model dam is half size of domestic CFRD dam. Detailed material preparation, model design, model set-up, model instrumentation and testing procedures are presented. In order to simulate the prototype concrete faced slab, three kinds of thin fiberglass plates with different thickness was adopted in the three model tests. The water level control facility was specially designed for this experiment to control the water level rise and drawdown during centrifuge flight. Although most of the results from the three model tests are satisfactory, it is also required that the centrifuge test results should be compared with those of numerical analysis and field measurements to analyze the centrifuge test results more in detail.

  • PDF

A Study of MD Constitutive Model Calibration for Coarse-grained Soils (조립재료에 대한 MD 구성모델 캘리브레이션 연구)

  • Choi, Changho;Shin, Dong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • The structural stability of fill dam largely depends on the engineering behavior of rock materials used as main zone for dam construction and it is necessary to understand well the stress-strain characteristics of fill materials as well as shear strength property. In addition, the numerical analysis of fill dam requires a thorough study for calibrating material properties and parameters of a coarse-grained soil constitutive model. In this paper, large triaxial test results for Buhang-dam fill materials are analyzed and constitutive model parameters are calibrated based on the test results. It is shown that MD constitutive model is capable to predict the stress-strain behavior of dense and loose coarse-grained soils used for Buhang-dam construction based on the comparison study between the experimental test result and numerical simulation.

Centrifuge Test for Simulating Behavior of CFRD During Initial Impoundment (초기 담수시 CFRD 거동 모사를 위한 원심모형실험)

  • Seo, Min-Woo;Kim, Yong-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.109-119
    • /
    • 2007
  • As the number of CFRD constructions increases, the necessity of an accurate assessment on its behavior also has been increasing. The performance of concrete faced rockfill dam (CFRD) under different water levels is a great concern of dam engineers and designers in the world. However, domestic research on CFRD design and construction has not been performed sufficiently. This study deals with three centrifuge model tests, mainly investigates quantitatively the deformation of the concrete faced slabs and settlements on the crest with different face slab stiffness. The prototype of a centrifugal model dam is half size of domestic CFRD dam. Detailed material preparation, model design, model set-up, model instrumentation and testing procedures are presented. In order to simulate the prototype concrete faced slab, three kinds of thin fiberglass plates with different thickness were adopted in three model tests. Finally, the centrifuge test results were compared with field measurements of domestic dams, which showed that the centrifuge tests were performed successfully.