• Title/Summary/Keyword: Rocket engine

Search Result 989, Processing Time 0.022 seconds

Evaluation on the Regenerative Cooling Characteristics in Liquid Rocket Engine of 10tf-thrust using Kerosene and Liquid Oxygen as a Propellant (케로신과 액체산소를 추진제로 하는 10톤급 액체로켓엔진의 재생냉각 특성 평가)

  • Han, Poong-Gyoo;Cho, Won-Kook;Cho, Yong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.111-117
    • /
    • 2004
  • An analytical study was carried out to evaluate the regenerative cooling characteristics in the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel. As a supplementary cooling method, a radiative cooling was applied to the nozzle extension. It was found out from this work that the cooling system with the regenerative and radiation cooling only is not adaptable for the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel for the $2^{nd}$ stage of the space launch vehicle, with the viewpoint of the thermal and thermo-structural instability and the excessive pressure drop in the cooling channel.

Study on Heat Transfer Characteristic of Liquid Rocket Engine with Calorimeter (칼로리미터를 적용한 액체로켓엔진의 열전달 특성 연구)

  • NamKoung Hyuck-Joon;Han Poong-Gyoo;Kim Hwa-Jung;Kim Dong-Hwan;Lee Kyoung-Hun;Kim Young-Soo;Yoon Young-Bin;Kim Dong-Jun;Kim Sung-Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.213-219
    • /
    • 2005
  • Small liquid rocket engine (SLRE) with calorimeter were developed and tested to evaluate cooling characteristics in the liquid rocket engine. Therefore, cooling performance analysis was performed to predict the heat transfer coefficient on gas side wall in 10 calorimeter channel. A heat transfer empirical formula was determined by results of firing test and computational simulation.

  • PDF

Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test (소형 액체로켓엔진 지상연소시험용 초음속 노즐의 성능해석)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.321-324
    • /
    • 2011
  • A computational analysis of nozzle flow characteristics and plume structure using Reynolds-averaged Navier-Stokes equations with $k-{\omega}$ SST turbulence model was conducted to examine performance of the supersonic nozzle employed in a small liquid-rocket engine for ground firing test. Computed results and experimental outcome of 2-D converging-diverging nozzle flow were compared for verifying the computational capability as well as the turbulence model validity. Numerical computations of 2-D axisymmetric nozzle flow was carried out with the selected model. As a result, flow separation with backflow appeared around the nozzle exit. This investigation was reported as a background data for the optimal nozzle design of small liquid-propellant rocket engine for ground test.

  • PDF

Effect of Thermal Barrier Coating and Film Cooling Condition on the Cooling Performance of Liquid-propellant Rocket Engine Combustor (액체로켓 엔진 연소기의 열차폐 코팅 및 막냉각 조건에 따른 냉각 성능 변화 해석)

  • Joh, Miok;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.52-59
    • /
    • 2014
  • The effect of ceramic thermal barrier coating thickness on the cooling performance of a liquid-propellant rocket engine combustor has been investigated through combustion/cooling performance analysis whose results verified against measured data from hot-firing tests. Also have been confirmed the effects of film cooling amount near the face plate on the coolant temperature and on the thermal barrier coating surface temperature. Some important points to be considered for designing cooling schemes for regeneratively cooled rocket engine combustor have been drawn and reviewed from present study and further verification of the analysis tool should be performed in the future.

A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구)

  • 한풍규;조원국;조용호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.83-88
    • /
    • 2003
  • An analytical study was carried out to evaluate the regenerative cooling characteristics in the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel. As a supplementary cooling method, a radiative cooling was applied to the nozzle extension. It was found out from this work that the cooling system with the regenerative and radiation cooling only is not adaptable as a cooling method for the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel for the 2nd stage of the space launch vehicle. So, additional cooling method, curtain cooling was introduced and analyzed. Curtain cooling was very effective to reduce the thermal and thermo-structural instability.

  • PDF

Analysis of the Theoretical Performance Characteristics for Methane-fuel Bipropellant Rocket Engine (메탄을 연료로 하는 이원추진제 로켓엔진의 이론성능특성 분석)

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • A set of preliminary design parameters for the bipropellant rocket engine using liquid methane-fuel as green propellant were derived through a theoretical performance analysis. Chemical equilibrium analysis utilizing CEA was conducted for the prediction of combustion performance: combustion characteristics according to the O/F ratio and chamber pressure variation were investigated. For a determination of chamber-characteristic length, the vaporization time of fuel-droplet with various performance parameters was calculated by applying Spalding's 1-D droplet vaporization model. Finally, the preliminary design specification of methane-bipropellant rocket engine, which is to be performance-tested under the ground firing condition, was proposed.

Cold Flow and Ignition Tests for a 75-tonf Kerosene-Cooled Liquid Rocket Engine Thrust Chamber (75톤급 액체로켓엔진 케로신 냉각 연소실 수류시험 및 점화시험)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.25-28
    • /
    • 2010
  • The Cold flow and ignition tests have been performed for a technology demonstration model of 75-tonf liquid rocket engine thrust chamber which was designed and manufactured on the basis of the previous development experience of a 30-tonf liquid rocket engine thrust chamber. The hydrodynamic characteristics of the facility supply pipelines and the filling time of the cooling kerosene were obtained through the cold flow tests. The ignition cyclogram was determinded using the results and the ignition test was successfully carried out. The acquired data and test technique of present ignition test will be used in hot firing tests.

  • PDF

Experience Cases of Combustion Instability in Development of Thrust Chamber for Liquid Rocket Engine (액체로켓엔진 연소기 개발에서의 연소불안정 경험 사례)

  • Kim, Jonggyu;Kim, Hyeon-Jun;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.54-58
    • /
    • 2017
  • A combustion instability has been one of the most serious problems in the development of combustion devices including rocket engine and gas turbine. In particular, a high-frequency combustion instability generated by resonant coupling between combustion phenomena and acoustic oscillations within thrust chamber causes severe damage to the hardware. Because it is accompanied by high amplitude pressure oscillations and excessive heat flux to the chamber wall. Therefore, combustion instability is one of the difficult problems that must be resolved in developing liquid rocket engine. This paper describes the cases of combustion instability encounted during the development of thrust chamber for KSR-III and KSLV-II.

  • PDF

Configuration Design, Hot-firing Test and Performance Evaluation of 200 N-Class GCH4/LOx Small Rocket Engine (Part II: Steady State-mode Ground Hot-firing Test) (200 N급 GCH4/LOx 소형로켓엔진의 형상설계와 성능시험평가 (Part II: 정상상태 지상연소시험))

  • Kim, Min Cheol;Kim, Young Jin;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • A performance evaluation of the 200 N-class GCH4/LOx small rocket engine was performed through ground hot-firing test. As a result, the combustion pressure and thrust raised with the increase of the oxidizer supply pressure, and thus the specific impulse, characteristic velocity, and their efficiency increased. The characteristic velocity was measured at about 90% performance efficiency. The change of chamber aspect ratio did not affect the performance of the rocket engine in the test condition specified. In addition, uncertainty evaluation was conducted to ensure the reliability of the test results.

A Comparative Analysis for the Performance of 200 N-class Gaseous Methane-Liquid Oxygen Small Rocket Engine According to the Characteristic Length Variation (특성길이 변화에 따른 200 N급 기체메탄-액체산소 소형로켓엔진의 성능 비교 분석)

  • Kang, Yun Hyeong;Ahn, Hyun Jong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.85-92
    • /
    • 2020
  • Ground hot-firing tests were conducted to analyze the combustion performance according to the characteristic lengths 1.37 m, 1.71 m, and 2.06 m of the combustion chamber in 200 N-class GCH4-LOx small rocket engine. Thrust, specific impulse, and characteristic velocity at the steady-state could be obtained as the key performance parameters of the rocket engine. The performance characteristics acquired through the test were compared and analyzed with the theoretical performance calculated from CEA analysis. Observation of the influence of characteristic length on the combustion performance indicates that an optimal characteristic length shall remain between 1.71 m and 2.06 m.