• Title/Summary/Keyword: Rock site

Search Result 896, Processing Time 0.023 seconds

Prediction of Leachate Migration from Waste Disposal Site to Underground LPG Storage Facility and Review of Contamination Control Method by Numerical Simulations (수치모의를 통한 지하 LPG 저장시설에 인접한 폐기물매립지에서의 침출수이동 예측 및 제어공법 검토)

  • 한일영;서일원;오경택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • In case waste disposal site is to be constructed close to the underground facilities such as LPG storage cavern which is completely maintained by groundwater pressure, it is generally requested that the possibility on leachate contamination of cavern area be reviewed and the countermeasure, if it is estimated cavern area is severely affected by leachate, be taken into consideration. Prediction was performed and leachate control plan was made using by analytical and the numerical analysis on the leachate migration which is likely to happen at the area between the proposed waste disposal site and the underground LPG storage cavern located at the U petrochemical complex. Analytical solutions were obtained by the conservative mass advection-diffusion equation and the effect of advection and dispersion factor on the leachate migration was reviewed through peclet number calculation and the functional relationship between the factors and leachate transport velocity was established, which leads to enable us to predict the leachate transport velocity without difficulties when different parameters (factors) are used for analytical solution. Numerical solutions were obtained by FEM using AQUA2D which is for the simulation of groundwater flow and contaminant transport. 3-D discrete fracture models were simulated and fracture flow analysis was performed and feasibility study on the water-curtain system was conducted through the fracture connectivity analysis in rock mass. As results of those analyses, it was interpreted that the leachate would trespass on the LPG storage cavern area in 30 years from the proposed wate disposal site and the vertical water-curtain system was effective mathod for the prevention of leachate's migration further into the cavern area.

  • PDF

Mineralogical Characteristics of Calcite observed in the KAERI Underground Research Tunnel (고준위폐기물 지하처분연구시설(KURT)에서 관찰되는 방해석의 광물학적 특징)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Cho, Won-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.239-246
    • /
    • 2006
  • KAERI Underground Research Tunnel (KURT) was recently constructed through the site investigation from the yea. of 2003 at KAERI site, Dukjin-dong, Yuseong-gu, Daejeon city. The geo-logic setting of the site has been slightly metamorphosed. There are small fractures developed in the rock and several kinds of secondary filling minerals exist in the fractures. We examined mineralogical characteristics of fracture-filling calcite, which is not only largely distributed, but also can significantly affect the radionuclides migration. The calcite is found along fractures like other secondary minerals, forming thick veins in part. Most calcite-filled fractures contain quartz, iron oxides, and dolomite as minor minerals. The calcite crystals show an characteristic appearance with an uniformly oriented growth, coated with goethite on the edge and the etch-pit sites of their surface. Some calcite crystals have been newly formed by the precipitation of elements dissolved from the tunnel shotcrete wall, and their morphology changed according to the chemistry and flow of groundwater. The calcite can modify the groundwater chemistry and significantly affect the sorption behavior of radionuclides. The characteristic crystal structure and surface morphology of the calcite examined in the KURT site will be used as important basic data for the radionuclide migration experiment in the future.

Study for Selection of Replica Stone of the Stele for Buddhist Monk Wonjong at Yeoju Godalsa Temple Site using Magnetic Susceptibility (전암대자율을 이용한 여주 고달사지 원종대사탑비 비신의 복제용 석재 선정 연구)

  • Lee, Myeong Seong;Chun, Yu Gun;Kim, Jiyoung
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.299-310
    • /
    • 2016
  • The Stele for Buddhist Monk Wonjong at Godalsa Temple Site was destroyed a long time ago. Only the tortoise-shaped pedestal and the ornamental capstone in the form of a hornless dragon remain at the site and the broken stele body is stored at the National Museum of Korea today. The stele is made of two kinds of rocks that are coarse-grained biotite granite for the pedestal and the capstone, and fine-grained biotite granite including hornblende assemblages and feldspar phenocrysts for the stele body. The coarse-grained biotite granite of the pedestal and capstone showed same magnetic susceptibility and lithological characteristics with biotite granite outcrops in Yeoju area, whereas the fine-grained granite of the stele body did not. To find a provenance of the stele body stone, we investigated Korean granites in terms of magnetic susceptibility, lithology and old recordings about construction process of the stele. As a result, Haeju granite is the most likely to be a cognate rock of the stele body stone as it has same texture and lithological characteristics like color, hornblende assemblages, mineral composition and magnetic susceptibility. It is imported from Haeju (North Korea) to South Korea via China commercially, and the most suitable for a replica stone of the stele body.

Building Information Modeling of Caves (CaveBIM) in Jeju Island at a Specific Site below a Road at Jaeamcheon Lava Tube and at a Broader Scale for Hallim Town (제주도 한림 재암천굴과 도로 교차구간의 CaveBIM 구축)

  • An, Joon-Sang;Kim, Wooram;Baek, Yong;Kim, Jin-Hwan;Lee, Jong-Hyun
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.449-466
    • /
    • 2022
  • The establishment of a complete geological model that includes information about all the various components at a site (such as underground structures and the compositions of rock and soil underground space) is difficult, and geological modeling is a developing field. This study uses commercial software for the relatively easy composition of geological models. Our digital modeling process integrates a model of Jeju Island's 3D geological information, models of cave shapes, and information on the state of a road at the site's upper surface. Among the numerous natural caves that exist in Jeju Island, we studied the Jaeamcheon lava tube near Hallim town, and the selected site lies below a road. We developed a digital model by applying the principles of building information modeling (BIM) to the cave (CaveBIM). The digital model was compiled through gathering and integrating specific data: relevant processes include modeling the cave's shape using a laser scanner, 3D geological modeling using geological information and geophysical exploration data, and modeling the surrounding area using drones. This study developed a global-scale model of the Hallim region and a local-scale model of the Jaeamcheon cave. Cross-validation was performed when constructing the LSM, and the results were compared and analyzed.

The Spatial Distribution of Quercus mongolica and Its Association with Other Tree Species in Two Quercus mongolica Stands in Mt. Jiri, Korea

  • Jang, Woong-Soon;Park, Pil-Sun;Han, Ah-Reum;Kim, Kyung-Youn;Kim, Myung-Pil;Park, Hak-Ki
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.67-77
    • /
    • 2010
  • Stand structure and spatial associations of the dominant tree species in Quercus mongolica stands were investigated to understand interspecific relationships and the persistent dominance of Q. mongolica. We examined the species composition, DBH (diameter at breast height) distribution, and spatial distribution of trees (${\geq}\;2.5\;cm$ DBH) in two permanent $100\;m\;{\times}\;100\;m$ plots in Q. mongolica-dominant stands on the western part of Mt. Jiri. Ripley's K-function was used to characterize the spatial patterns and associations of dominant tree species. Q. mongolica showed a continuous and reverse-J shaped DBH distribution with clumped spatial distribution in both study sites. Q. mongolica and Abies koreana exhibited a negative association implying potential interspecific competition. The positive spatial association between Q. mongolica and Alnus hirsuta var. sibirica and Fraxinus sieboldiana were affected by site characteristics: limited habitat conditions with a large proportion of rock surface. Our results suggest that interactions among species were complex and ranged from positive to negative. Differences in stand and site characteristics and regeneration mechanisms among the species play an important role in regulating their spatial distribution patterns, while competition between individuals also contributes to spatial patterning of these communities. The high density and the early developmental stage of spatial distribution and structural characteristics of Q. mongolica and the relatively low importance values of other species in the stands imply that Q. mongolica will remain dominant in the study sites in the near future.

The Development of Straddle Packer Hydraulic Testing Equipment to Characterize Permeability in Deep Boreholes (장심도 시추공 정밀수리시험 장비 구축)

  • Kim, Kyung-Su;Park, Kyung-Woo;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.213-220
    • /
    • 2010
  • The permeability characterization on the natural barrier for deep geological disposal of radioactive waste is very critical to evaluate total safety and performance assessment of disposal site. However, the confidence level in using previous hydraulic testing equipments consist of simple components to estimate rock mass permeability is not high enough to reflect in situ condition. The purpose of this research is to establish an advanced hydraulic testing equipment, which is applicable to deep borehole (up to 1,000 m), through the improvement of technical problems of previous packer systems. Especially, the straddle packer hydraulic testing equipment was designed to adopt both the hydraulic downhole shut-in valve(H-DHSIV) to minimize the wellbore storage effect and the real time data acquisition system to measure the pressure changes of test interval including its upper and lower parts. The results from this research lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project.

Evaluation of disc cutter penetration depth of shield TBM in practice (쉴드TBM의 현장 디스크커터 관입깊이에 대한 연구)

  • Kim, Sang-Hwan;Park, In-Joon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.321-331
    • /
    • 2013
  • This paper describes the evaluation of shield TBM disc cutter penetration depth in practice. In this study the disc cutter penetration depth used to design the excavation speed of tunnel is reviewed. The characteristics of ground encountered in the investigation site are analysed and evaluated. The shield TBM used in the field is reviewed to verify the applicability of machine in the site. The thrust and torque capacities of each TBM disc cutter are also evaluated. Based on the field data, the excavation volume and speed are re-analysed to evaluate the disc cutter penetration depth used in the design stage. It is clearly found that the design value of disc cutter penetration depth needs to modify when estimation of the TBM capacities in very hard rock formation ($S_c$ >150 MPa).

Real-time Seismic Damage Estimation for Harbor Site Considering Ground Motion Amplification Characteristics (항만지역의 지반증폭 특성을 반영한 실시간 지진피해 평가방안 수립)

  • Kim, Han-Saem;Yoo, Seung-Hoon;Jang, In-Sung;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.55-65
    • /
    • 2012
  • The purpose of this study is to estimate seismic damage for harbor site considering dynamic amplification characteristics. First of all, a series of ground response analysis is performed and then correlation equations between rock outcrop accelerations and peak ground accelerations (PGAs) are determined. These equations are saved into DB and when an earthquake occurs, PGAs are determined by them as soon as possible. For earthquake events, seismic damage grades of harbor structures are determined by using the correlated PGAs and fragility curves of harbor structures in real time. In this study, seismic damage was estimated and classified into several grades by applying two hypothetical earthquakes.

Statistical Approach to Groundwater Recharge Rate Estimation for Non-Measured Areas of Water Levels (미계측 지역 지하수 함양량 추정을 위한 통계적 접근)

  • Kim, Gyoobum;Kim, Kiyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.73-85
    • /
    • 2008
  • 320 national groundwater monitoring stations have been constructed since 1995 and groundwater levels are measured automatically 4 times a day at each well. It has a difficulty to estimate an average recharge rate of watershed using the recharge rate of the monitoring site because of the lack of its representative on converting a point recharge rate into a spatial one. In this study, the relations between site characteristics (topography, hydraulics, geology, facilities, etc.) and recharge rates of 223 monitoring sites, which were selected using cluster analysis, were analyzed using statistical methods, and finally, regression models were constructed for a recharge rate estimation of non-measured areas. The independent variables for these simple regression models, 1) width of adjacent stream, 2) distance to the nearest stream, 3) topographic slope, and 4) rock type, are proposed using analysis of variance. These models have lots of advantages such as an easy data collection from topographic and geologic maps, a few input variables, and also simplicity in use. Suitability analysis from the comparison between estimation values and original ones at monitoring sites shows that these models are useful for a groundwater recharge estimation.

  • PDF

Study on Analysis for the Slope Monitoring Performance at the Whangryeong Mountain Site (황령산 사면 계측관리 분석에 관한 연구)

  • La Won Jin;Choi Jung Chan;Kim Kyung Soo;Cho Yong Chan
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.429-442
    • /
    • 2004
  • Landslide of the Whanpyeong Mountain which was occurred at Busan Metropolitan City in 1999 belongs to the category of plane failure. Automatic monitoring system to measure horizontal displacement, pore pressure change and load change has operating from reconstruction stage for evaluating rock slope stability (August, 2000$\~$Feburuary, 2002). As a result of the analysis on the monitoring performance data, it is suggested that infiltrated rain water from pound surface discharges rapidly through cut-slope because pressure head of water decreases rapidly after rainfall while rise of pore pressure is proportional to the amount of rain water. As a result of data analyses for inclinometers and load cells, it seems that slope is stablized be cause ground deformation is rarely detected. The areas especially similar to the study site where landslide is induced by heavy rain fall, change of pore pressure is rapidly analyzed using automatic monitoring system. Therefore, it is considered that automatic monitoring system is very effect for slope stability analysis on important cut-slopes.