• Title/Summary/Keyword: Rock site

Search Result 897, Processing Time 0.026 seconds

A study on the relationship between the thermal properties of rock and the enviroment in underground spaces (암반 열물성과 지하공간 환경분석 연구)

  • Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.335-341
    • /
    • 1996
  • This fundamental study analyzes the relationship between rock thermal properties and psychrometric properties in underground space and has a ultimate goal to develope technologies for predicting major environmental variables. The study is divided into 2 subjects (1) developement of a basic model for predicting temperature and humidity, (2) analysis of the validity of the model through application to a local underground storage space for military supplies. The basic model is built for the network of tunnel-shaped underground spaces. The model takes into account rock thermal properties and changes in moisture content in the air due to condensation/evaporation on the rock surface. Using lumped-parameter analytical method, heat flux from or to the surrounding rock is calculated and then the psychrometric properties(air quantity, pressure, temperature, humidity) are estimated through network simulation. The model can be utilized regardless of the tunnel type. The study site is a local storage space built in rock, mainly granite gneiss and quartz-porphyry. It is a U-shaped tunnel, 593.5m long and 6x6.5m wide. Relative humidity inside has to be strictly controlled under 55% to avoid erosion of a certain types of supplies stored in 6 chambers with the capacity of 300~1.000 ton. The thermal conductivity varies between 2.734 and 2.779W/m$^{\circ}C$ and the thermal diffusivity is in the range of 1.119 and $1.152{\times}10^{-6}\;m^2/s$ the specific heat between 910 and $920\;J/kg^{\circ}C$. Relative errors of the predicted values of dry/wet temperature and relative humidity are 0.8~3.0%, 0~7.5% and 0~7.0%, respectively. Apparent errors associated with the rock surface temperature seems to be partly due to the intrinsic limitations in the infrared thermometer used in this study.

  • PDF

Rock Mechanics Studies at the KAERI Underground Research Tunnel for High-Level Radioactive Waste Disposal (고준위폐기물 처분연구를 위한 지하처분연구시설에서의 암석역학 관련 연구)

  • Kwon, S.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.43-55
    • /
    • 2007
  • An underground research tunnel, KURT, was constructed at Korea Atomic Energy Research Institute, for various in situ validation experiments related to the development of a high-level radioactive waste disposal system. KURT, which has length of 255 m (access tunnel 180 m and research modules 75 m) and size of $6m{\times}6m$ was excavated in a cryatalline rock mass. In the KURT project, different rock mechanics studies had been carried out during the concept design, site characterization, detailed design, and construction stages. From the geophysical survey, borehole investigation, and rock property tests in laboratory and in situ, the rock and rock mass properties required for the mechanicsl stability analysis of KURT could be achieved and used for the input parameters of computer simulations. In this paper, important results from the rock mechanics studies at KURT and the three-dimensional mechanical stability analysis will be introduced.

Preliminary Study on Candidate Host Rocks for Deep Geological Disposal of HLW Based on Deep Geological Characteristics (국내 심부 지질특성 연구를 통한 고준위방사성폐기물 심층처분 후보 암종 선행연구)

  • Dae-Sung Cheon;Kwangmin Jin;Joong Ho Synn;You Hong Kihm;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.28-53
    • /
    • 2024
  • In general, high-level radioactive waste (HLW) generated as a result of nuclear power generation should be disposed within the country. Determination of the disposal site and host rock for HLW deep geological repository is an important issue not only scientifically but also politically, economically, and socially. Considered host rock types worldwide for geological disposal include crystalline rocks, sedimentary rocks, volcanic rocks, and salt dome. However, South Korea consists of various rock types except salt dome. This paper not only analyzed the geological and rock mechanical characteristics on a nationwide scale with the preliminary results on various rock type studies for the disposal host rock, but also reviewed the characteristics and possibility of various rock types as a host rock through deep drilling surveys. Based on the nationwide screening for host rock types resulted from literature review, rock distributions, and detailed case studies, Jurassic granites and Cretaceous sedimentary rocks (Jinju and Jindong formations) were derived as a possible candidate host rock types for the geological disposal. However, since the analyzed data for candidate rock types from this study is not enough, it is suggested that the disposal rock type should be carefully determined from additional and detailed analysis on disposal depth, regional characteristics, multidisciplinary investigations, etc.

A Methodology to Determine Resilient Modulus for Crushed Rock-Soil Mixture (암버력-토사 성토의 회복탄성계수 산정방법)

  • Park, In-Beom;Kim, Seong-Su;Jung, Young-Hoon;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1190-1200
    • /
    • 2010
  • A method was developed to determine resilient modulus for crushed rock-soil mixtures whose usage has been increased recently without engineering specifications. The method is based on the subtle different modulus called nonlinear dynamic modulus and was lately implemented in residual soils and engineered crushed-stones. Hereby. the same method was expanded to crushed rock-soil mixtures containing as large grain diameter as 300mm. The method utilize field direct-arival tests for the determination of maximum Young's modulus, and a large scale free-free resonant column test, which is recently developed to is capable to test as large grain diameter as 25mm, for modulus reduction curves. The prediction model of resilient modulus was evaluated for crushed rock-soil mixtures of a highway construction site at Gimcheon, Korea.

  • PDF

Study on the Behavior of Toe of Drilled Shaft on the Rock Mass (암반에 근입된 말뚝의 선단 거동 특성에 관한 연구)

  • Park, Woan-Suh;Jeon, Suk-Won;Han, Yong-Hee;Choi, Se-Kun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.842-847
    • /
    • 2008
  • Despite of the increasing number of the application of the drilled shaft pile in construction site, most of the study of pile capacity has been centered side shear resistance. But it is common that the drilled shaft is socketed on the rock so as to use the bearing resistance, so prediction of the toe's movement and characteristic of the bearing capacity is important as the side shear resistance. Therefore the model tests were performed in order to study the characteristic of bearing capacity on rock mass. The material of the test blocks were the mortar which was mixed with sand, cement and water, and test block size was $240{\times}240{\times}240mm$. Load was pressed by the 45mm of diameter of miniaturized pile and plate jack and steal plate were used to the confined stress for representing the underground condition. The relation of load-displacement was measured in many different conditions of rock mass such as direction of discontinuities, spacing and strength, and q-w curves of the toe of the pile were verified in each condition.

  • PDF

An Estimation Technique of Rock Mass Classes for a Tunnel Design (터널 설계를 위한 암반등급 산정 기법에 관한 연구)

  • 유광호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.319-326
    • /
    • 2003
  • In site investigation for tunnel designs, nowadays, geophysical exploration such as seismic exploration and electric resistivity exploration as well as drilling logging is frequently carried out. A method which can systematically make the utmost use of all available data obtained from investigation, therefore, is strongly required for the optimal evaluation of ground conditions in terms of rock mass class, etc. Many researchers have proposed using qualitative data to cope with the lack of quantitative data. In this study, an evaluation technique of rock mass classes in undrilled region was proposed based upon multiple indicator kriging method which is a geostatistical technique. It was shown that two types of data with different degree of uncertainty, for example, drilling logging data and geophysical exploration data, could be simultaneously utilized in evaluating rock mass classes for a real tunnel design.

A Methodology for Compaction Control of Crushed-Rock-Soil-Fills (암버럭-토사 성토 노반의 다짐 관리 방안)

  • Park, Chul-Soo;Hong, Young-Pyo;Joh, Sung-Ho;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.607-616
    • /
    • 2006
  • More strict construction control of railway roadbeds is demanded in high speed railway system because of heavier repeated dynamic loading than conventional railways. The aim of this study is to propose a compaction control methodology of crushed-rock-soil-fills including as large particles as $200\sim300mm$ in diameter, which are easily encountered in high speed railway roadbed. Field tensity evaluation and in turn compaction control of such crushed-rock-soil-fills are almost impossible by conventional methods such as in-situ density measurements or plate loading tests. The proposed method consists of shear wave measurements of compaction specimens in laboratory and in-situ measurements of fills. In other words, compaction control can be carried out by comparing laboratory and field shear wave velocities using as a compaction control parameter. The proposed method was implemented at a soil site in the beginning and will be expanded to crushed-rock-soil-fills in future. One interesting result is that similar relationship of shear wave velocity and water content was obtained as that of density and water content with the maximum value at the optimum moisture content.

  • PDF

Effect of Rock Mass Properties on the Blast Vibration by Taguchi method (다꾸치법에 의한 암반물성의 발파진동 영향요소 분석)

  • 김남수;김보현;양형식
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.475-480
    • /
    • 2000
  • The propagation of blast vibration and the damping characteristics depend on both the mechanical properties of rock mass and weight charge. In this study, the characteristics of propagation and damping were analyzed by FLAC. The construction site was the second Kwang-ju circulating road. Taguchi method which is one of experimental design methods was used for determination of input data and parameter levels. The results showed that rock density was the most dominant of variables being concerned in this study, which affect the propagation of blast vibration.

  • PDF

A Study on the Groundwater Flow and Solute Transport in Discontinuous Rock Mass Using Fracture Network Analysis: An Estimation of Equivalent Permeability on Discontinuous Rock Mass (균열망 해석법을 이용한 불연속 암반의 지하수 유동 및 용질이동 연구: 불연속 암반의 등가 투수계수 추정)

  • 주광수
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.378-386
    • /
    • 2000
  • This paper presents groundwater flow characteristics in discontinuous rock mass using fracture network program(NAPSAC) by statistical approach. Equivalent permeability coefficients are estimated from borehole data around Mabuk test tunnel site and fracture map on the arch of the tunnel. The reliability of fracture network model is obtained from determination of input data for statistical fracture network analysis from the real data(data of fracture network, data of hydraulic tests). The variation of permeability and mean anisotropic permeability coefficients are calculated from the realized model by increasing the size. As a result of analysis, a strong anisotropy of permeability is observed according to the direction of the fracture sets around the test tunnel.

  • PDF

A Case Study about the Slope Collapse and Reinforcement Method on the Infinite Slope (무한사면에서의 사면붕괴와 보강대책 사례연구)

  • You Byung-Ok;Hong Jung-Pyo;Jun Jong-Hern;Lee Tae-Sun;Min Kyoung-Nam
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.146-155
    • /
    • 2006
  • The target slope of this study, formed during the construction of highway, is the very high infinite slope where sliding began along the discontinuity. Although an attempt was made to stabilize the upper part of the slope by installing the rock anchors, large scale failure was occurred at the lower part if the reinforced area. Afterwards, subsequent failures were observed two times. To investigate the cause of the failure, residual shear strength was measured by performing the direct shear test of rock specimen of the site. The anchor design was based on the pull-out test. Considering the slope surface where the undulation was severe and the variation of strength was very large, buttressing was used to obtain the required anchoring capacity.