• Title/Summary/Keyword: Rock mass classification system

Search Result 72, Processing Time 0.022 seconds

Consideration of Failure Type on the Ground Excavation (지하굴착에 따른 붕괴유형에 대한 고찰)

  • Lee, Jung-Jae;Jung, Kyung-Sik;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.660-670
    • /
    • 2009
  • Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.

  • PDF

Development of an Artificial Neural Network Expert System for Preliminary Design of Tunnel in Rock Masses (암반터널 예비설계를 위한 인공신경회로망 전문가 시스템의 개발)

  • 이철욱;문현구
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-96
    • /
    • 1994
  • A tunnel design expert system entitled NESTED is developed using the artificial neural network. The expert system includes three neural network computer models designed for the stability assessment of underground openings and the estimation of correlation between the RMR and Q systems. The expert system consists of the three models and the computerized rock mass classification programs that could be driven under the same user interface. As the structure of the neural network, a multi -layer neural network which adopts an or ror back-propagation learning algorithm is used. To set up its knowledge base from the prior case histories, an engineering database which can control the incomplete and erroneous information by learning process is developed. A series of experiments comparing the results of the neural network with the actual field observations have demonstrated the inferring capabilities of the neural network to identify the possible failure modes and the support timing. The neural network expert system thus complements the incomplete geological data and provides suitable support recommendations for preliminary design of tunnels in rock masses.

  • PDF

The Evaluation for Estimation Method of Deformation Modulus of Rock Mass Using RMR System (RMR을 이용한 암반의 주요 변형계수 추정식의 적용성 평가)

  • Chun, Byung-Sik;Lee, Yong-Jae;Jung, Sang-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.25-32
    • /
    • 2006
  • The deformation modulus of rock masse is a very important design factor for the computation of stability of tunnels and their support systems. Several empirical formulas to estimate the deformation modulus using simple rock classification methods such as RQD or RMR are widely used because field tests to evaluate the deformation modulus are very expensive and time consuming work. However, these formulas can be depended on experiences from the characteristics of local sites in each country. Therefore, in this study, the applicability of empirical formulas was analyzed by comparing estimated value with the measured value from eight sites in South Korea. The results show that the estimated value based on the empirical formulas partially have tendency to overestimate. Especially, in case of sedimentary rocks, it was too difficult to apply to the empirical formulas because there was no relationship between estimated value and measured value. For these reasons, additional data from many tests and accurate analyses are necessary to evaluate the estimation method for the deformation modulus considering the local characteristics of rock masse.

  • PDF

Uplift Capacity for Bond Type Anchored Foundations in Rock Masses (부착형 암반앵커기초의 인발지지력 평가)

  • Kim, Dae-Hong;Lee, Yong-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.147-160
    • /
    • 2008
  • This paper presents the results of full-scale loading tests performed on 54 passive anchors and 4 group anchored footings grouted to various lengths at several sites in Korea. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, properties of the discontinuities, and the strength of rebar. Anchors in poor quality rocks generally fail along the grout/rock interfaces when their depths are very shallow (a fixed length of less than 1 m). However, even in such poor rocks, we can induce a more favorable mode of rock pull-up failure by increasing the fixed length of the anchors. On the other hand, anchors in good quality rocks show rock pull-up failures with high uplift resistance even when they are embedded at a shallow depth. Laboratory test results revealed that a form of progressive failure usually occurs starting near the upper surface of the grout, and then progresses downward. The ultimate tendon-grout bond strength was measured from $18{\sim}25%$ of unconfined compressive strength of grout. One of the important findings from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for a transmission tower foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

A Case Study for Rock Mass Classification and Statistical Analysis in Roadway Tunnel (도로터널에서의 암반분류 및 통계분석 사례)

  • 김영근;유동욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06b
    • /
    • pp.197-226
    • /
    • 2003
  • 터널에서의 암반분류/평가는 지보패턴결정 뿐만 아니라 터널주변암반에 대한 설계정 수 산정 및 물성평가에 있어 매우 중요한 요소라 할 수 있다. 암반분류는 각 국 또는 주요기관 별로 분류안이 만들어져 있으며, 현재 RMR분류와 Q-system이 가장 활발히 적용되고 있다. 본고에서는 터널설계단계에서 암반분류방법과 지보패턴결정과정을 고찰하였으며, 도로설계를 중심으로 적용현황을 분석하였다 또한 실제 터널시공시 암반분류 및 판정에 의한 지보공 변경사례를 살펴봄으로서 시공 중 암반분류/평가의 의미를 고찰하였다. 그리고 암반분류요소들에 대한 통계분석을 실시하여 암반분류요소들간의 상관관계를 분석하였다.

  • PDF

A Study on Jointed Rock Mass Properties and Analysis Model of Numerical Simulation on Collapsed Slope (붕괴절토사면의 수치해석시 암반물성치 및 해석모델에 대한 고찰)

  • Koo, Ho-Bon;Kim, Seung-Hee;Kim, Seung-Hyun;Lee, Jung-Yeup
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.65-78
    • /
    • 2008
  • In case of cut-slopes or shallow-depth tunnels, sliding along with discontinuities or rotation could play a critical role in judging stability. Although numerical analysis is widely used to check the stability of these cut-slopes and shallow-depth tunnels in early design process, common analysis programs are based on continuum model. Performing continuum model analysis regarding discontinuities is possible by reducing overall strength of jointed rock mass. It is also possible by applying ubiquitous joint model to Mohr-Coulomb failure criteria. In numerical analysis of cut-slope, main geotechnical properties such as cohesion, friction angle and elastic modulus can be evaluated by empirical equations. This study tried to compare two main systems, RMR and GSI system by applying them to in-situ hazardous cut-slopes. In addition, this study applied ubiquitous joint model to simulation model with inputs derived by RMR and GSI system to compare with displacements obtained by in-situ monitoring. To sum up, numerical analysis mixed with GSI inputs and ubiquitous joint model proved to provide most reliable results which were similar to actual displacements and their patterns.

Optimization of tunnel support patterns using DEA (차분진화 알고리즘을 적용한 터널 지보패턴 최적화)

  • Kang, Kyung-Nam;An, Joon-Sang;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • It is important to design tunnel support system considering the various loads acting on the tunnel because they have a direct impact on the stability of tunnels. In Korea, standardized support patterns are defined based on the rock mass classification system depending on the project, and it is stated that it should be modified appropriately considering the behavior of tunnel during construction. In this study, the tunnel support pattern optimization method is suggested based on the convergence-confinement method, earth pressure, axial force of rock bolt, and moment acting on the shotcrete. The length and spacing of the rock bolts and the thickness of the shotcrete were optimized by using the differential evolution algorithm (DEA) and the results were compared to the standard support pattern III for railway tunnel. Rock bolt length can be reduced and the installation interval can be widened for shallow tunnel. As the depth of tunnel increases, the thickness of shotcrete increases linearly. Therefore, the thickness of shotcrete should be thicker than the standard support pattern as the depth of tunnel increases to secure the stability of tunnel.

Assessment of Tunnel Displacement with Weak Zone Orientation using 3-D Numerical Analysis (3차원 수치해석을 이용한 연약대 방향에 따른 터널 거동 특성 평가)

  • Yim, Sung-Bin;Jeong, Hae-Geun;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • A 3-D numerical analysis was carried out to observe potential effects of orientation of inherent weak zones to tunnel behaviors and stress distributions during tunnel excavation. Weak zones used for the analysis were placed at the upper 1D part from crown, on the crown and on the center of face, using orientations derived from the 6th RMR parameter for assessment of joint orientation effect on tunnel. Mechanical properties of rock mass were derived through a in-situ displacement measurement-based back analysis. Finally, a classification chart for crown settlement with five ranks based on orientation and location of weak zones is suggested.

Study on The Contact Metamorphism of Weolagsan Granite (월악산화강암(月岳山花崗岩)의 접촉변성(接觸變成)에 관(關)하여)

  • Lee, Dai Sung;Kang, Jun Nam
    • Economic and Environmental Geology
    • /
    • v.11 no.4
    • /
    • pp.169-182
    • /
    • 1978
  • The Weolagsan area consists of four units; (1) Low grade meta-sediments of the upper members of Ogcheon age unknown group such as Changri (mainly black slate and phyllitic rock), Majeonri (mainly alternation of slate, limestone and chert) and Hwanggangri Formation (pebble bearing phyllitic sediments); (2) Samtaesan Formation of Chosun System of Ordovician; (3) So called meta-volcanics and (4) Weolagsan Granite and its associations which intruded above mentioned meta-sediments and meta-volcanics. This study was focused to know the Woelagsan granite and its metasomatic effects to the country rocks petrographically and petrochemically. According to the field survey, microscopic work and some chemical analysis, the granite is a "normal granite" based on the Streckeisen's classification and belongs to a mass of the Central-zone younger group in Ogcheon geosynclinal belt. The granite metasomatized the country rocks along its northern contact zone. Zone of calcareous and cherty rocks (Majeonri formation) was silicified partly and skarned locally at the contact with the granite. The chemical analysis of the zone show no difinite variations in contents of $SiO_2$ and CaO with the distance from the granite. It seems to be indicated that the silicification of this part was not so metasomatized by the granite body, but thermally affected as much as to be partially remelted in the specific parts of the formations. Meta-volcanic rock zone was slightly chloritized near contact with the granite. Limestone of Samtaesan Formation was silicified and skarned along the contact zone by the granite body. The chemical analysis of the zone show some noticiable changes in compositions of $SiO_2$ and CaO with distance from the granite boundary. It can be imagined that the silicification of this zone was metasomatically originated by Woelagsan Granite. According to chemical analysis on several trace elements, the ratio of Zn/Cr and Ni/Cr are relatively higher than that of Cu/Cr in the above mentioned silicified zones. Generally the variation of these metal elements in the zones tend to be regular with distance from the granite body.

  • PDF

A Study on the Variation of the Surface and Groundwater Flow System Related to the Tunnel Excavation in DONGHAE Mine Area (II) - Hydrogeochemical Consideration (동해신광산 터널굴착공사와 관련된 지표수 및 지하수의 유동변화에 대한 조사연구 (II)-수리지구화학적 고찰)

  • 전효택;이희근;이종운;이대혁;류동우;오석영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.27-40
    • /
    • 1997
  • The hydrogeochemical study on the 15 natural waters was carried out in the vicinity of tunnel excavation site of Donghae largely composed of granite and limestone. The water samples can be classified based on their chemical characteristics into two groups; waters draining in the granitic region(group 1) and the limestone region(group 2). This classification was also confirmed by statistical examination through cluster analysis, and the tunnel seepage waters collected at the same site appear to be included in group 1 and 2 by their sampling period, respectively. According to factor analysis, the waters of group 1 art mainly represented by the weathering of plagioclase to kaolinite and those of group 2 are characterized by the dissolution of calcite. Different properties of the tunnel seepage waters are thought to be resulted from the effective waterproofing processes conducted during the sampling interval to the surface and subsurface leakage zones at the granitic region, which contributed to the change of groundwater flow system. However both the tunnel seepage waters seem to have thermodynamically interacted with rock-forming minerals in their wallrocks. The mixing ratio of the waters from two groups and water-rock interactions are evaluated quantitatively for the tunnel seepage waters through the mass balance approach, and the results are identical with the previous conclusions in this study.

  • PDF