• Title/Summary/Keyword: Rock dynamics

Search Result 47, Processing Time 0.016 seconds

The mechanical properties of rock salt under cyclic loading-unloading experiments

  • Chen, Jie;Du, Chao;Jiang, Deyi;Fan, Jinyang;He, Yi
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.325-334
    • /
    • 2016
  • Rock salt is a near-perfect material for gas storage repositories due to its excellent ductility and low permeability. Gas storage in rock salt layers during gas injection and gas production causes the stress redistribution surrounding the cavity. The triaxial cyclic loading and unloading tests for rock salt were performed in this paper. The elastic-plastic deformation behaviour of rock salt under cyclic loading was observed. Rock salt experienced strain hardening during the initial loading, and the irreversible deformation was large under low stress station, meanwhile the residual stress became larger along with the increase of deviatoric stress. Confining pressure had a significant effect on the unloading modulus for the variation of mechanical parameters. Based on the theory of elastic-plastic damage mechanics, the evolution of damage during cyclic loading and unloading under various confining pressure was described.

Experimental Techniques for Dynamic Mechanical Characteristics of Rock Materials (암석의 동역학적 특성 규명을 위한 실험기법의 분석)

  • Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.30-43
    • /
    • 2020
  • Rock dynamics is a relatively new discipline to study the mechanical behaviors of rock materials (or rock masses) under dynamic loading conditions. Many rock mechanics and rock engineering issues are concerned with the dynamic phenomena such as mining development, civil engineering, earthquake, military science, and various disasters. The significance of rock dynamic researches has been increased in these days. This paper introduces conventional experimental techniques for rock dynamic experimental methods and the particular characteristics of rock dynamic behaviors with several remarkable recent studies.

Self-healing capacity of damaged rock salt with different initial damage

  • Chen, Jie;Kang, Yanfei;Liu, Wei;Fan, Jinyang;Jiang, Deyi;Chemenda, Alexandre
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.615-620
    • /
    • 2018
  • In order to analyze the healing effectiveness of rock salt cracks affected by the applied stresses and time, we used the ultrasonic technology to monitor the ultrasonic pulse velocity (UPV) variations for different initial stress-damaged rock salts during self-healing experiments. The self-healing experiments were to create different conditions to improve the microcracks closure or recrystallized, which the self-healing effect of damaged salt specimens were analyzed during the recovery period about 30 days. We found that: The ultrasonic pulse velocity of the damaged rock salts increases rapidly during the first 9 days recovery, and the values gradually increase to reach constant values after 30 days. The damaged value and the healed value were identified based on the variation of the wave velocity. The damaged values of the specimens that are subject to higher initial damage stress are still keeping in large after 30 days recovery under the same recovery condition It is interesting that the damage and the healing were not in the linear relationship, and there also existed a damage threshold for salt cracks healing ability. When the damage degree is less than the threshold, the self-healing ratio of rock salt is increased with the increase in damage degree. However, while the damage degree exceeds the threshold, the self-healing ratio is decreased with the increase in damage.

Charts for estimating rock mass shear strength parameters

  • Wan, Ling;Wei, Zuoan;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.257-267
    • /
    • 2016
  • Charts are used extensively in slope practical application to meet the need of quick assessment of rock slope design. However, Charts for estimating the shear strength of the rock mass of a slope are considerably limited. In this paper, based on the Hoek-Brown (HB) criterion which is widely used in rock slope engineering, we present charts which can be used to estimate the Mohr-Coulomb (MC) parameters angle of friction ${\phi}$ and cohesion c for given slopes. In order to present the proposed charts, we firstly present the derivation of the theoretical relationships between the MC parameters and ${\sigma}_{ci}/({\gamma}H)$ which is termed the strength ratio (SR). It is found that the values of $c/{\sigma}_{ci}$ and ${\phi}$ of a slope depend only on the magnitude of SR, regardless of the magnitude of the individual parameters ${\sigma}_{ci}$(uniaxial compressive strength), ${\gamma}$(unit weight) and H (slope height). Based on the relationships between the MC parameters and SR, charts are plotted to show the relations between the MC parameters and HB parameters. Using the proposed charts can make a rapid estimation of shear strength of rock masses directly from the HB parameters, slope geometry and rock mass properties for a given slope.

Numerical Study on the Thermal Stratification Behavior in Underground Rock Cavern for Thermal Energy Storage (TES) (열에너지 저장을 위한 지하 암반공동 내 열성층화 거동에 대한 수치해석적 연구)

  • Park, Do-Hyun;Kim, Hyung-Mok;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.188-195
    • /
    • 2012
  • Using a computational fluid dynamics (CFD) code, FLUENT, the present study investigated the thermal stratification behavior of Lyckebo storage in Sweden, which is the very first large-scale rock cavern for underground thermal energy storage. Heat transfer analysis was carried out for numerical cases with different temperatures of the surrounding rock mass in order to examine the effect of rock mass heating due to periodic storage and production of thermal energy on thermal stratification and heat loss. The change of thermal stratification with respect to time was quantitatively examined based on an index of the degree of stratification. The results of numerical simulation showed that in the early operational stage where the surrounding rock mass was less heated, the stratification of stored thermal energy was rapidly degraded over time, but the degradation and heat loss tended to reduce as the surrounding rock mass was heated during a long period of operation.

Rock Dynamics and Tectonophysics (제 3주제 암석 동력학 및 지각물리학)

  • McGarr, I.;Dubinski, J.
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.283-284
    • /
    • 1999
  • 지하에서의 안전성과 광체의 경제적 회수가 광업계의 주요관심분야이다. 지하구조물과 주변 응려의 상호작용으로 채굴로 인한 지진활동(seismicity)이 지하안정성과 생산성에 결정적인 영향을 미치며, 암석절단, 천공, 발파기술 등을 적절하게 사용하는 것이 주요관심의 대상이 된다. 이 들에 대한 기초적인 이해는 석유 생산이나 천공장비 개발 등에도 적용될 수 있다.

  • PDF

Thermal Performance Analysis of Multiple Thermal Energy Storage (TES) Caverns with Different Separation Distances Using Computational Fluid Dynamics (전산유체역학을 이용한 다중 열저장공동의 이격거리별 열적 성능 분석)

  • Park, Dohyun;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.201-211
    • /
    • 2014
  • In the present study, the thermal performance of multiple rock caverns for large-scale thermal energy storage (TES) was numerically investigated for different separation distances between the caverns through heat transfer analysis using a computational fluid dynamics code, FLUENT. The thermal performance of multiple caverns was assessed in terms of the thermal stratification within the caverns and the heat loss to the surroundings, and the heating characteristics of the rock around the caverns were investigated. The results of numerical simulation showed that there was little difference in thermal performance between multiple TES caverns with different separation distances when the surrounding rock was less heated and it reached thermal steady-state, which represent the thermal states of the surrounding rock at the early and long-term operational stages of the TES caverns, respectively. However, as the separation distance decreased, the rock between the caverns reached thermal steady-state more quickly, and thus the heat loss from the caverns tended to converge rapidly to the value of heat loss occurred under thermal steady-state conditions in the surrounding rock. This result implies that the operating cost of heating the surrounding rock (i.e., rock heating) can be reduced with a reduction in the separation distance between multiple caverns, and suggests that the separation distance should be determined by considering the operating cost of rock heating as well as the construction cost of the caverns.

Adaptive Control System Designs for Aircraft Wing Rock (항공기 Wing Rock 운동에 대한 적응제어시스템 설계)

  • Shin, Yoong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.725-734
    • /
    • 2011
  • At high angles of attack, aircraft dynamics can display an oscillatory lateral behavior that manifests itself as a limit cycle known as wing rock. In this paper, a classical and neural network based adaptive control design methods of adaptively stabilizing the oscillatory motion by adapting uncertainties are described in detail. All methods are simulated and compared using a model for an 80o swept delta wing.

Calculations of the Thermal Expansion Coefficient for Rock-Forming Minerals Using Molecular Dynamics (MD) Simulation (분자동역학(MD) 시뮬레이션을 이용한 조암광물의 열팽창 계수 산정)

  • 서용석;배규진
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.269-278
    • /
    • 2001
  • We describe the calculation of thermal expansion coefficients of $\alpha$-quartz, muscovite and albite using a MD simulation method. The selection of interatomic potentials is important for the MD calculation, and we used the 2-body interatomic potential function. The coefficients are calculated using a differential operation of the temperature dependence of the lattice constant obtained from the NPT-ensemble molecular dynamics simulation. Reasonable agreement is found between the analytical results and measured data.

  • PDF

A Study on the Numerical Modelling of Blast Source (발파원 모델링을 위한 수치해석적 고찰)

  • 백승규;류창하
    • Explosives and Blasting
    • /
    • v.21 no.4
    • /
    • pp.37-42
    • /
    • 2003
  • The source of rock breakage by explosive blasting is the energy released from an explosive. It is transmitted to the surrounding rock mass causing various types of fracture of rock material. The reaction of explosives and the resulting action on the surrounding rock mass are completed in very short tine, making it almost impossible to observe the processes occurring in the interior of the rock mass. In this study several input parameters are investigated by numerical modelling of blast source and dynamic response of rock mass. It is shown that damping coefficient and rising time are major parameters affecting dynamics response of rock mass.