• Title/Summary/Keyword: Rock condition

Search Result 908, Processing Time 0.024 seconds

Geotechnical Characteristics of Cut Slope in Tertiary Jungja Bain, Ulsan area (울산지역 제3기 정자분지의 도로사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jung-Yup;Rhee, Jong-Hyun;Park, Sung-Kyu;Kim, Kwan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.107-112
    • /
    • 2005
  • Road is built continuously along with development of industry and cut slope is happened necessarily in road construction. Geoengineers are executing cut slope stability analysis considering various cut slope condition such as topography, geology, hydraulic condition and so on. The Tertiary Jungja Basin is located in the southeastern coastal area of the Korea Peninsula. Jungja Basin area is created by geotectonic movement of the plate after Early Miocene epoch. The northwestern and southwestern boundary of the basin is fault zone. The Basement rock is hornfels (Ulsan Formation). Basin-fills consist of extrusive volcanic rock(Tangsa Andesites), unconsolidated fluviatile conglomerate(Kangdong Formation) and shallow brackish-water sandstone(Sinhyun Formation). The characteristics of cut slopes in this area is different with cut slopes in the other site. Soil layers in this area is unconsolidated sediments and is not formed the weathering and erosion of the rock. So, the depth of soil layer is very thick. Faults of this area are northwest-southeast and northeast-southwest direction. Expandible clay mineral as smectite, chlorite et al. detected from fault gouge using XRD. Therefore, Jungja Basin area must consider the characteristics of the faults and soil layers thickness necessarily cut slopes stability analysis.

  • PDF

Wetting-Induced Collapse in Rock Fill Materials for Embankment (토공구간 성토체의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1287-1296
    • /
    • 2007
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in about 400km section at 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing by several researchers(Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, with focusing in various soil/rock type, stress levels, wetting condition more closely.

  • PDF

Numerical Analysis of the Mechanical and Hydraulic behavior of Concrete Plug in Underground Storage Cavern (지하저장공동에서의 콘크리트 플러그의 역학적 및 수리적 거동에 관한 수치해석적 연구)

  • 박병기;이희근;전석원;박의섭
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.344-354
    • /
    • 2000
  • The concrete plug in an underground cavern prevents the stored product (oil, gas, etc) from leaking and the excessive inflow of underground water, so it plays an important role in construction and operation of the storage cavern. Additionally, it should maintain its stability under every possible loading condition. Once the plug is constructed, the cavern is isolated from the external access. Therefore, mechanical and hydraulic consideration should be made in construction to fulfill its function. Therefore, in this study, numerical analyses were conducted to study the optimal shape and thickness of the plug with respect to the various conditions of installation depth, the shape of the plug, in-situ stress ratio (K), the condition of rock-plug interface, and the effect of Excavation Damaged Zone (EDZ). This paper also presents the effect of slot depth on the hydraulic behavior of the plug. These analyses were carried out by using the 2-dimensional finite difference code, rm FLAC, and the 3D code, rm FLAC$\^$3D/.

  • PDF

Experimental and Numerical Approach foy Optimization of Tunnel Blast Design (터널 발파설계 최적화를 위한 실험 및 수치해석적 접근)

  • 이인모;김상균;권지웅;박봉기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2003
  • Laboratory model blast and in-situ rock blast tests were conducted to determine blast-induced stress wave propagation characteristics under different explosive types, different loading conditions and different mediums. Dynamic numerical approaches were conducted under the same conditions as experimental tests. Stress magnitudes at mid-point between two blast holes which were detonated simultaneously increased up to two times those of single hole detonation. The rise time of maximum stress in a decoupled charge condition was delayed two times that of a fully charged condition. Dynamic numerical analysis showed almost similar results to blast test results, which verifies the effectiveness of numerical approaches fur optimizing the tunnel blast design. Dynamic numerical analysis was executed to evaluate rock behavior and damage of the contour hole, the sloping hole adjacent to the contour hole in the road tunnel blasting pattern. The rock damage zone of the sloping hole from the numerical analysis was larger than that of the contour hole. Damage in the sloping hole can be reduced by using lower density explosive, by applying decoupled charge, or by increasing distance between the sloping hole and the contour hole.

Structural monitoring and analyses on the stability and health of a damaged railway tunnel

  • Zhao, Yiding;Yang, Junsheng;Zhang, Yongxing;Yi, Zhou
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.375-386
    • /
    • 2021
  • In this paper, a study of stability and health of a newly-built railway tunnel is presented. The field test was implemented to monitor the secondary lining due to the significant cracking behaviors influenced the stability and health of the tunnel structure. Surface strain gauges were installed for monitoring the status of crack openings, and the monitoring outputs demonstrated that the cracks were still in the developing stage. Additionally, adjacent tunnel and poor condition of surrounding rock were identified as the causes of the lining cracking by systematically characterizing the crack spatial distribution, tunnel site and surrounding rock conditions. Reconstruction of partial lining and reconstruction of the whole secondary lining were designed as the maintenance projects for different cracking regions based on the construction feasibility. For assessing the health conditions of the reinforced lining, embedded strain gauges were set up to continuously measure the strain and the internal force of the reconstructed structures. For the partially reconstructed lining, the outputs show the maximum tensile elongation is 0.018 mm during 227 days, which means the structure has no obvious deformation after maintenance. The one-year monitoring of full-section was implemented in the other two completely reconstructed cross-sections by embedded strain gauge. The outputs show the reconstructed secondary lining has undertaken the pressure of surrounding rock with the time passing. According to the calculated compressive and tensile safety factors, the completely reconstructed lining has been in reliable and safe condition during the past year after reinforcement. It can conclude that the aforementioned maintenance projects can effectively ensure the stability and health of this tunnel.

Long-term Compression Settlement of Granular (Rock/Soil Mixture) Fill Materials under Concrete Track (콘크리트궤도 하부 조립지반재료의 장기압축침하에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Lee, Jin-Wook;Lee, Jun-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.95-106
    • /
    • 2009
  • This study was intended to identify the effect of the wetting on a long-term compression settlement of the rock/soil mixture used as fill material, depending on compaction and grading conditions. The relatively large settlement happened under the fully-submerged condition, and a repeated settlement was monitored when moisture content increased over and over again like the rainfall infiltration. In case of the materials without fine fractions or compacted in wet condition, the settlement caused by wetting was relatively low. In conclusion, the long-term compression settlement of granular (rock/soil mixture) fill material is more affected by the increase of water content and temperature change (freezing and thawing) than creep.

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

A Design and Operation of EPBM Applied in Fort Canning Boulder Bed of Singapore (싱가포르 포트캐닝 전석층에 적용된 EPBM의 설계 및 시공)

  • Kim, Uk Young;Noh, Seung Hwan;Noh, Sang Rim
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.417-422
    • /
    • 2015
  • This paper introduces the design and operational considerations for TBM tunneling in boulder bed which poses significant problems in terms of advance rate and machine wear. Managing these problems is difficult since normal soil investigation techniques do not accurately predict the presence and frequency of boulders. This has leads to considerable extra costs and delays during construction. In this paper, EPBM design and operational parameters, cutter wear characteristics and soil conditioning method in soft ground condition were studied and key successes were highlighted for future projects in similar ground condition.

Travel Times of Radionuclides Released from Hypothetical Multiple Source Positions in the KURT Site (KURT 환경 자료를 이용한 가상의 다중 발생원에서의 누출 핵종의 이동 시간 평가)

  • Ko, Nak-Youl;Jeong, Jongtae;Kim, Kyung Su;Hwang, Youngtaek
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.281-291
    • /
    • 2013
  • A hypothetical repository was assumed to be located at the KURT (KAERI Underground Research Tunnel) site, and the travel times of radionuclides released from three source positions were calculated. The groundwater flow around the KURT site was simulated and the groundwater pathways from the hypothetical source positions to the shallow groundwater were identified. Of the pathways, three pathways were selected because they had highly water-conductive features. The transport travel times of the radionuclides were calculated by a TDRW (Time-Domain Random Walk) method. Diffusion and sorption mechanisms in a host rock matrix as well as advection-dispersion mechanisms under the KURT field condition were considered. To reflect the radioactive decay, four decay chains with the radionuclides included in the high-level radioactive wastes were selected. From the simulation results, the half-life and distribution coefficient in the rock matrix, as well as multiple pathways, had an influence on the mass flux of the radionuclides. For enhancing the reliability of safety assessment, this reveals that identifying the history of the radionuclides contained in the high-level wastes and investigating the sorption processes between the radionuclides and the rock matrix in the field condition are preferentially necessary.

A Study on the Methods to Calculate Mixed Weights of the Condition Evaluation of Rock Slope (절리암반비탈면의 상태평가항목에 대한 혼합가중치 산정방법에 관한 연구)

  • Byun, Yoseph;Choi, Jungchan;Seong, Joohyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.37-44
    • /
    • 2018
  • This study proposed the modified weighting values for jointed rock slopes. The studies on deduction of evaluation index and calculation of weighting, development of criteria for evaluation and evaluation models have been conducted through decision making techniques such as the Delphi method and the AHP method by many researchers. Because these decisions making techniques may be less objective, it is necessary to calculate reasonable weighting considering both an objective weighting and a subjective weighting simultaneously. In this study, utilizing the inspection data of jointed rock slopes, an objective weighting that the concept of entropy is applied was calculated. And the subjective weighting values by AHP technique was calculated based on the opinion of experts. And a modified weighting was suggested by combining the two. As a result, it was found that jointed rock slopes have higher weighting in artificial factors and the damage status items. In addition based on the finally suggested weighting (mixed weighting), the revised evaluation criteria could be presented by converting it into the evaluation score (76 points). And it is expected that it could be usefully utilized upon inspections on cutting slopes and safety diagnosis since objective and highly reliable criteria compared to the condition evaluation criteria that are currently used could be presented through the results of the study.