• Title/Summary/Keyword: Rock Support

Search Result 446, Processing Time 0.029 seconds

Evaluation of Rock Damage Zone Using Seismic Logging Method (탄성파 점층법을 이용한 암반손상대 평가)

  • Kang Seong-Seung;Hirata Atsuo;Obara Yuzo;Haraguchi Naoyuki
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.50-57
    • /
    • 2006
  • Development of structures such as slope and tunnel, waste disposal, oil and LPG storages, and underground power house and so on, is increasing with the year. The method for appropriate estimation of rock state such as fresh or damaged rocks is also requested with increasing structural development. On these purposes, seismic logging system, which is a simple and easy way for handling as well as small and light, has been developed. Seismic logging method is one of logging tests, which is able to evaluate the state of rock mass with various shapes and is possible to obtain the relatively accuracy data at situ state. In addition, seismic logging method is at to apply to estimate structural behavior, before and after support installed. According to the results obtained from this study, firstly, it is clear that the extent of damage in rock slope due to blasting is able to be evaluated with quantity using seismic logging method, moreover to decide the damage zone in rock slope reasonably. Secondly, it is expected that installing depth of support is able to be decided more effectively and economically, using the results of seismic logging data. Finally, seismic logging method is also able to be applied safety supervision of structures, before and after support installed.

A Study on Discontinuum Analysis and Continuum Analysis of Tunnels in Jointed Rock Mass (절리발달 암반터널의 불연속체해석과 연속체해석에 관한 고찰)

  • Cho Sun-Kyu;Kim Si-Kyeok;Kim Do-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1089-1094
    • /
    • 2004
  • Numerical methods to estimate behaviors of jointed rock mass can be roughly divided into two method : discontinuous model and continuum model. Generally, distinct element method (DEM) is applied in discontinuous model, and finite element method (FEM) or finite difference method (FDM) is utilized in continuum model. To predict a behavior of discontinuous model by DEM, it is essential to understand characteristics of joints developed in rock mass through field tests. However, results of field tests can not provide full information about rock mass because field tests is conducted in limited area. In this paper, discontinuous analysis by UDEC and continuous analysis by FLAC is utilized to estimate a behavior of a tunnel in jointed rock mass. For including discontinuous analysis in continuous analysis, joints in rock mass is considered by reducing rock mass properties obtained by RMR and decreasing shear strength of rock mass. By comparing and revising two analysis results, analysis results similar with practical behavior of a tunnel can be induced and appropriate support system is decided.

  • PDF

A Study on the In-Situ Measurement of the Deformation and the Back Calculation of the Load in the Mine Roadway Over-Stressed Rocks (중지압 운반 갱도내 변형계측 및 하중역산에 관한 연구)

  • Cho, Young-Soo;Kim, Hong-Woo;Shin, Hee-Soon;Chung, So-Keul;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.40-49
    • /
    • 1993
  • In this study, the indirect estimation method of the support load which is based upon the integrated measuring technique suggested by Kovari was applied to the calculation of support load in the mine roadway. Four test supports were installed in the area where they had to be replaed. Two of those were GI-130 rigid supports and the others were U-26 yieldable supports. The vibrating wire strain gages which were attached inpairs on the steel arch support were used to provide an accurate measurement. Bending moments and normal forces obtained from strain gage pairs were used to calculate the support load. This method was also verified by laboratory bending tests. The results obtained from the back-calculction method showed relatively good agreement with the measured convergence for each crossection.

  • PDF

Application on Cable bolt as Tunnel Support System (터널 보강재로서의 케이블 볼트의 적용성 평가)

  • Kim, Young-Ho;Yoo, Chan-Ho;Han, Beom-Seok;Kim, Seoung-Wook;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1530-1535
    • /
    • 2009
  • The cable bolt is useful underground space support system such as mining in Europe. In spite of favorable strength characteristics, past record of the cable bolt is rarely in Korea. In this study, to evaluate the mechanically characteristics the cable bolt on tunnel support system. To conduct the laboratory strength test in order to enquire material properties as reinforcement material and numerical analysis was performed considering laboratory test results. To estimate the behavior characteristics on tunnel system in which supported by the cable bolt system and compared the behavior characteristics with the rebar rock bolt system result.

  • PDF

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

Evaluation of the Stability for Underground Tourist Cavern in an Abandoned Coal Mine (폐탄광 갱도를 활용한 갱도전시장의 안정성 평가)

  • Han Kong-Chang;Jeon Yang-Soo
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.425-431
    • /
    • 2005
  • A series of geotechnical surveys and in-situ tests were carried out to evaluate the stability of underground mine cave in an abandoned coal mine. After the closure of the mine, the underground mine drifts have been utilized for a tourist route since 1999. The dimension of the main cave is 5m width, 3m height and 230m length. The surrounding rock mass of the cave is consist of black shale, coal and limestone. Also, the main cave is intersected by two fault zone. Detailed field investigations including Rock Mass Rating(RMR), Geological Strength Index(GSI) and Q classification were performed to evaluate the stability of the main cave and to examine the necessity of reinforcement. Based on the results of rock mass classification and numerical analysis, suitable support design was recommended for the main cave. RMR and Q values of the rock masses were classified in the range of fair to good. According to the support categories proposed by Grimstad & Barton(1993), these classes fall in the reinforcement category of the Type 3 to Type 1. A Type 3 reinforcement category signifies systematic bolting and no support is necessary for the Type 1 case. From the result of numerical analysis, it was inferred that additional support on the several unstable blocks is required to ensure stability of the cave.

Recent Issues in the Design and Construction of High-Performance Shotcrete Lining (고성능 숏크리트 라이닝의 설계 및 시공기술 분석)

  • 배규진;이석원;박해균;이명섭;김재권;장수호
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • The development of high-performance shotcrete lining is essential in improving the long-term durability of tunnels and in introducing single-shell tunnelling methods, where shotcrete as well as rockbolts are used as permanent support members. In this paper, new and advanced admixtures to improve shotcrete performance are introduced. In addition, requirements for mechanical properties as well as test items for quality control of shotcrete are summarized. A case study on the application of the pneumatic pin penetration test which can estimate compressive strength of shotcrete more easily and quickly is also illustrated. Previous studies to analyze the behaviors of shotcrete lining by considering its transient hardening and to carry out the sensitivity analysis of the design parameters of shotcrete lining are discussed to give fundamental concepts on rock-support interactions. Representative single-shell tunnelling methods where high-performance shotcrete lining is applied as a permanent support are also introduced.

Evaluation of Support Requirements for the Single Shell Tunnels from the Case Study of Rock Mass Classifications (국내 암반분류 사례를 통한 싱글쉘 터널 지보량 산정 연구)

  • Kim Hak-Joon;Lee Seong-Ho;Shin Hyu-Seong;Bae Gyu-Jin
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.283-291
    • /
    • 2006
  • Shotcrete is used as a permanent lining in single shell tunnels even though shotcrete has been used as a temporary lining in NATM tunnels. Therefore, the accurate evaluation of strength parameters is very crucial because the reliable estimation of loads acting on the shotcretes is necessary to maintain the stability of tunnels. The evaluation of strength parameters of the ground far the single shell tunnels should be investigated to adapt the method in Korea because the geological condition of Korea is different from that of other country. Rock classification and strength parameters obtained from 25 tunnel sites were investigated for this study. Support types fur the different rock classes are suggested for the single shell tunnels in Korea based on the NMT because Q-system has been widely used in Korea. The support types in terms of both Q and RMR values are given based on the correlation of Q and RMR values obtained from the case studies.

Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Model Experiment (모형 실험에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구)

  • 이대혁;김영근;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 1998
  • Considering the mechanical cracking in the concrete lining of tunnels occurring in relatively short period of time after the construction, there is a need for the study on the mechanical behavior and the cracking characteristics of double lining support system(shotcrete and concrete lining). For the proposed study, downscaled lining models of Kyung-Bu High Speed Railway tunnels were tested. Most longitudinal cracks at about 93 percentage developed within 30 arch degree from the vault. Cracking load was about 30 percentage of the failure load and the deflection under the cracking load was 10 percentage of the deflection under the failure load. The overbreak around the vault contributed to the reduction of the capacity for cracking and failure by the percentage greater than the reduced effective depth. Of several rock block types considered in this research, the triangular block was the most critical, and the right triangular block under eccentric load was secondly critical for the stability of the tunnel lining system. The dimensionless support reaction curves were derived from the experimental results for single and double lining. The general equation to compute the designed flexural moment was modified.

  • PDF

Optimum Support Pattern Design of the Tae-Gu Subway Tunnel (대구 지하철 터널의 적정지보패턴 선정에 관한 연구)

  • 지왕률;최재진
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.119-131
    • /
    • 1994
  • This is a Double-Track Railway tunnel in typical Tae-Gu black and gray shale forming part of the No.1 Line of the Tae-Gu Subway. The main fault zone at tunnel is a moderately to highly weathered and closely jointed zone, 0.5 m wide with associated paralled jointing which is slickensided and fractured. After excavation by blasting, the soft rocks should need to be reinforced with optimal supporting pattern which might be better redesigned through the consideration of the results of in-situ rock measurements at the field. Performances fo the field tests included Point Load Test, Schmidt Hammer Test, and field joint measurement gave the detail data for the optimum support design and safe excavation of the No.1 Line of Tae-Gu Subway at the No.1-7 consturction site adn the safety of this redesigned supports system was analysed by the FDM program FLAC.

  • PDF