• Title/Summary/Keyword: Rock Support

Search Result 445, Processing Time 0.025 seconds

Model Test Study on the Reinforcing Effect of Inclined System Bolting (경사볼트의 보강효과에 대한 모형시험 연구)

  • Lee, Jea-Dug;Kim, Byoung-Il;Piao, Ming-Shan;Yoo, Wan-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.231-238
    • /
    • 2012
  • The rockbolt functions as a main support, which restricts enlargement of the plasticity area and increases stability in the original ground around tunnels, and prevents a second deformation of an excavated surface by supplementing vulnerability arising from opening of the excavated surface. System bolting is generally applied if ground conditions are bad. System bolting is generally installed perpendicular to the excavation direction in every span. If a place is narrow, or it is difficult to insert bolts due to construction conditions, it may be connected and used with short bolts, or installed obliquely. In this study, laboratory model tests were performed to analyze the effect of the ground being reinforced by inclined bolts, based on a bending theory that assumes that the reinforced ground is a simple beam. In all test cases, deflections and vertical earth pressures induced by overburden soil pressure were measured. Total of 99 model tests were carried out, by changing the installation angle of bolts, lateral and longitudinal distance of bolts, and soil height. The model test results indicated that when the installation angle of bolts was less than $75^{\circ}$, deflections of model beams tended to increase rapidly. Also, the relaxed load that was calculated by earth pressure was rapidly increased when the installation angle of bolts was less than $75^{\circ}$. However, the optimum installation angle of inclined bolts was judged to be in the range of $90^{\circ}{\sim}75^{\circ}$. Also, as might be expected, the reinforcement effect of bolts was increased when the longitudinal and lateral distance of bolts was decreased.

THE EFFECT OF PERMANENT MAGNET CONNECTING WITH DENTAL IMPLANT ON DISTRIBUTION AND ATTACHMENT OF OSTEOBLAST-LIKE CELL AROUND THE DENTAL IMPLANT (임플랜트에 연결한 영구자석이 임플랜트 주위 뼈모세포의 분포와 부착에 미치는 영향에 관한 연구)

  • Oh Na-Hee;Choi Boo-Byung;Kwon Kung-Rock;Baik Jin;Lee Sung-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.511-518
    • /
    • 2005
  • Purpose: The purpose of this study is to find the effect of rare earth magnet's magnetic field of to the osteoblast around the implant by the means of observation number, and distribution around the implant which is connected to the permanent magnet but not, counted and compared by the number of cells attached to the surface of the implant. Material and method: The permanent magnets, made in the healing cap form, were connected to the implant future, and placed on the culture plate, The osteoblast-like cell: MC3T3-E1 were used for cell culture. As the control group, the implant were connected to normal healing cap, and cultured in the same conditions. 48 hours later, using inverted microscope, the number and distribution of osteoblast around the implant were observed, and 72 hours later, the number of the cells attached to the implant were counted. Results: As a result, the implant connected to the permanent magnet had proved to have a more concentrated cell distribution rate than the control group. The implant connected to the permanent magnet, neck area : which has about 10 gauss magnetic force, had more cells than apex area. The implant connected to the permanent magnet had proven to attach to the osteoblast more productively than control group's implant. Conclusions: This research showed that the magnetic field of the permanent magnet affected the distribution and growth rate of the osteoblast around the implant. In order to support this study, it also had need to monitor the progress of the permanent magnet specifically shown on the neck area, which has10 gauss magnetic force. So after additional research on the distribution and attachment of the cells, and further more, on bone formation, it will be concluded that the clinical applications ,such as immediate loading of implant treatment are possible.

Non-Destructive Material Analysis and Comparative Study of the Changdeok Palace "Chugudae" and National Designated "Chugudae" (창덕궁 이문원 측우대의 비파괴 재질 분석과 국가지정 측우대와의 비교)

  • Ahn, Yubin;Yoo, Jihyun;Lee, Myeongseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.3
    • /
    • pp.244-257
    • /
    • 2020
  • State-designated rain gauge pedestals, including a rain gauge support, were installed in front of the "Imunwon" at Changdeok Palace, made from various rock types. Some of those pedestals provide exact information on their production dates. These rain gauge pedestals are highly valuable as scientific instruments; however, there has been insufficient scientific research carried out on them. Therefore, precise analysis and conservative consideration are required. As a result of petrographic character analysis, the Changdeokgung rain gauge pedestal has been classified as marble. Furthermore, comparison of the results of P-XRF analysis with GSJ reference samples (JLs-1, JDo-1) has determined it to be dolomitic marble. Applying the same analysis to other state-designated rain gauge pedestals, it was presumed that the rain gauge supports at Gyeongsand-do Provincial Office and Gwansanggam were each made from aplite, pinkish medium-to-coarse biotite granite. Results confirmed that only the Changdeokgung rain gauge pedestal was made from marble. Marble is viewed as having an identity specificity rooted in a certain historical background. According to the tendency towards stone figures being made from marble, especially dolomitic marble, it is necessary to further studies whether particular rocks were used to make royal stone figures in Joseon Dynasty.

High-pressure amphibolite of the Imjingang belt in the Yeoncheon-Cheongok area (연천-전곡 지역에 분포하는 임진강대의 고압 각섬암)

  • ;;;Eizo Nakamura
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.1-19
    • /
    • 1995
  • In order to characterize the petrogenesis of the E-W trending Imjinganag belt, we studied the metamorphic rocks of the Yeoncheon Group near its type locality, Yeoncheon - Cheongok area, belonging to the southern part of this fold-thrust belt. The Samgot Formation of the Yeoncheon Group consists of calc-silicate and metapsammitic rocks together with amphibolite and amphibole gneiss. Layers of these metamorphic rocks concordantly occur in a wide area with its length greater than 15 km along their strike direction. Major mineral assemblages of the amphibolite are hornblende + plagioclase ${\pm}$ garnet ${\pm}$ diopside ${\pm}$ biotite ${\pm}$ quartz. Accessory rutile and ilmenite are characteristically replaced by titanite. Metamorphic temperatures and pressures estimated from the garnet - hornblende - plagioclase - quartz geothermo-barometers are 632-$736^{\circ}C$ and 7.9-11.1 kbar, respectively. Thus, the regional metamorphism of the study area belongs to the upper amphibolite facies. Furthermore, Sm-Nd and Rb-Sr data of garnet, plagioclase, and whole rock of an amphibolite define mineral isochrons of $231{\pm}30$ Ma and $222{\pm}24$ Ma, respectively, suggesting the Triassic metamorphism. These results are consistent with P-T conditions and metamorphic ages reported in the Shandong Peninsula, and support the hypothesis that the Chinese collision belt may extend into the Imjingang belt in the Korean Peninsula.

  • PDF

BIOLOGICALLY-BASED DOSE-RESPONSE MODEL FOR NEUROTOXICITY RISK ASSESSMENT

  • Slikker, William Jr.;Gaylor, David W.
    • Toxicological Research
    • /
    • v.6 no.2
    • /
    • pp.205-213
    • /
    • 1990
  • The regulation of neurotoxicants has usually been based upon setting reference doses by dividing a no observed adverse effect level (NOAEL) by uncertainty factors that theoretically account for interspecies and intraspecies extraploation of experimental results in animals to humans. Recently, we have proposed a four-step alternative procedure which provides quantitative estimates of risk as a function of dose. The first step is to establish a mathematical relationship between a biological effect or biomarker and the dose of chemical administered. The second step is to determine the distribution (variability) of individual measurements of biological effects or their biomarkers about the dose response curve. The third step is to define an adverse or abnormal level of a biological effect or biomarker in an untreated population. The fourth and final step is to combine the information from the first three steps to estimate the risk (proportion of individuals exceeding on adverse or abnormal level of a biological effect or biomarker) as a function of dose. The primary purpose of this report is to enhance the certainty of the first step of this procedure by improving our understanding of the relationship between a biomarker and dose of administered chemical. Several factors which need to be considered include: 1) the pharmacokinetics of the parent chemical, 2) the target tissue concentrations of the parent chemical or its bioactivated proximate toxicant, 3) the uptake kinetics of the parent chemical or metabolite into the target cell(s) and/or membrane interactions, and 4) the interaction of the chemical or metabolite with presumed receptor site(s). Because these theoretical factors each contain a saturable step due to definitive amounts of required enzyme, reuptake or receptor site(s), a nonlinear, saturable dose-response curve would be predicted. In order to exemplify this process, effects of the neurotoxicant, methlenedioxymethamphetamine (MDMA), were reviewed and analyzed. Our results and those of others indicate that: 1) peak concentrations of MDMA and metabolites are ochieved in rat brain by 30 min and are negligible by 24 hr, 2) a metabolite of MDMA is probably responsible for its neurotoxic effects, and 3) pretreatment with monoamine uptake blockers prevents MDMA neurotoxicity. When data generated from rats administerde MDMA were plotted as bilolgical effect (decreases in hippocampal serotonin concentrations) versus dose, a saturation curve best described the observed relationship. These results support the hypothesis that at least one saturable step is involved in MDMA neurotoxicity. We conclude that the mathematical relationship between biological effect and dose of MDMA, the first step of our quantitative neurotoxicity risk assessment procedure, should reflect this biological model information generated from the whole of the dose-response curve.

  • PDF

A preliminary study of watertightness and salt water resistance of spray-applied membrane (뿜어붙임멤브레인의 방수성능 및 염수저항성의 기초평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho;Lee, Cheol-Ho;Kim, Jintae;Choi, Myung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.283-299
    • /
    • 2017
  • The leakage of tunnel causes the long-term durability of the structures such as concrete lining to deteriorate. The cause of durability degradation can be various substances contained in groundwater such as chloride, sulphate, water, and gas. In this study, a series of test were carried out to determine the watertightness performance and the resistance to salt water of the spray-applied membrane used as non-structural rock support or as a waterproof material for tunnels. As a result, it was found that the penetration of water could occur in a specimen, and the reason was that the internal pores generated by the mixing of the liquid polymer and the powder material and the internal pores were connected by the water pressure. The tensile strength of the test specimens immersed in distilled water and saline water was found to be reduced to less than half of the tensile strength in normal condition. In addition, The elongation was measured to be higher in distilled water than in salt water. However, this result will require further investigation.

The Study of the Disability Education Experience of the Mothers for their Children with Brain Lesions - Hermeneutic Grounded Theory Methodology - (중증뇌병변장애인 자녀를 둔 어머니들의 장애자녀 교육경험에 관한 연구 -해석학적 질적연구-)

  • Kang, Sun Kyung;Choi, Yoon
    • 재활복지
    • /
    • v.20 no.4
    • /
    • pp.79-106
    • /
    • 2016
  • This study examined the meanings of the disability education of the mothers who reared their children with brain lesions. For this purpose, Rennie's hermeneutic grounded theory was applied and the consented 7 mothers participated in this study. With the in-depth interviews, 53 meaning units, 16 subordinate categories and 7 hermeneutic categories were classified. These 7 hermeneutic categories were 'wailing miserably everyday', 'social mobilization of the surroundings', 'straight forward', 'smash rock with the eggs', 'looking at a faraway', 'learning together' and 'subjectivation of disability education.' The experience of disabled children education process was concurrent experience of frustration and hoping that moving toward a big hope through the resignation stage, the chasing stage, the vision stage, the challenge stage, and the small achievement stage. Repetitive common patterns of behavior revealed three types: wishy-washy type, realistic-strategy type, and indomitable-challenge type. Moreover, the core category of educational experience was concluded to be 'a pedagogical process of turning despair from severe disabilities into hope through education.' Based on the analysis results, concrete intervention plans for social welfare practice were suggested to support the disabled children's lives with high quality of education.

Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method (기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가)

  • Yoon, Seok;Bang, Hyun-Tae;Kim, Geon-Young;Jeon, Haemin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • The buffer is a key component of an engineered barrier system that safeguards the disposal of high-level radioactive waste. Buffers are located between disposal canisters and host rock, and they can restrain the release of radionuclides and protect canisters from the inflow of ground water. Since considerable heat is released from a disposal canister to the surrounding buffer, the thermal conductivity of the buffer is a very important parameter in the entire disposal safety. For this reason, a lot of research has been conducted on thermal conductivity prediction models that consider various factors. In this study, the thermal conductivity of a buffer is estimated using the machine learning methods of: linear regression, decision tree, support vector machine (SVM), ensemble, Gaussian process regression (GPR), neural network, deep belief network, and genetic programming. In the results, the machine learning methods such as ensemble, genetic programming, SVM with cubic parameter, and GPR showed better performance compared with the regression model, with the ensemble with XGBoost and Gaussian process regression models showing best performance.

Reinforcing Effect of Buildings Considering Load Distribution Characteristics of a Pre-compressed Micropile (선압축 보강마이크로파일의 하중분담 특성을 고려한 건물 보강효과에 대한 연구)

  • Lee, Kwang Hoon;Park, Yong Chan;Moon, Sung Jin;You, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.825-836
    • /
    • 2022
  • Micropiles can be used to support additional load in extended building structures. However, their use brings about a risk of exceeding the bearing capacity of existing piles. In this study, pre-compression was applied to distribute the load of an existing building to micropiles, and an indoor loading test was performed to confirm the structural applicability of a wedge-type anchorage device designed to improve its capacity. According to the test results, the maximum strain of the anchorage device was 0.63 times that of the yield strain, and the amount of slip generated at the time of anchorage was 0.11 mm, satisfying structural standards. In addition, using MIDAS GTS, a geotechnical finite element analysis software, the effect of the size of the pre-compression, the thickness of the soil layer, and the ground conditions around the tip on the reaction force of the existing piles and micropiles were analyzed. From the numerical analysis, as the size of the pre-compression load increased, the reaction force of the existing pile decreased, resulting in a reduction rate of up to 36 %. In addition, as the soil layer increased by 5 m, the reduction rate decreased by 4 %, and when the ground condition at the tip of the micropile was weathered rock, the reduction rate increased by 14 % compared with that of weathered soil.

Consideration of Procurement System and Material Homogeneity for Lime and Clay using the Tombs within the King Muryeong and the Royal Tombs in Gongju, Korea (공주 무령왕릉과 왕릉원 내부에 사용한 석회 및 점토의 재료학적 동질성과 조달체계 검토)

  • Choi, Il Kyu;Yang, Hye Ri;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.447-463
    • /
    • 2022
  • The lime and clay that used in the construction of the Tomb of King Muryeong and the Royal Tombs in Gongju are auxiliary materials, and are used joint and plaster materials for the wall to play a role of structural support. In this study, the homogeneity between the tombs and material characteristics were interpreted through quantitative analysis of lime and clay. As a result of microtexture and composition analysis, almost the same minerals were identified in each sample groups, and similar characteristics were shown in thermal analysis. Geochemically, it is confirmed that the behavior characteristics are very similar regardless of the tombs. The compositions is also confirmed high homogeneity in the diagrams of CaO-MgO-SiO2, RO2-(RO+R2O) correlations, A-CN-K and A-CNK-FM triangles. Therefore, it is interpreted that the clay used for the construction of the tomb complex was supplied from around area, and the raw materials of lime were produced using shell fragments of oyster family based on mainly composed of calcite. It is interpreted that the raw materials of lime were supplied from middens along the west coast of down the Geumgang river in Korean peninsula, but the consideration of the supply site, needs to be cross-validated through stable isotope analysis, use of carbonate rock and reproduction experiments.