• 제목/요약/키워드: Rock Mass Rating system

검색결과 38건 처리시간 0.023초

다변량분석을 이용한 터널에서의 간편 RMR에 관한 연구 (A Study of Simple Rock Mass Rating for Tunnel Using Multivariate Analysis)

  • 위용곤;노상림;윤지선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.493-500
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard to make out because it is difficult to estimate each valuation items through all kind of field situations and items of RMR have interdependence. So the experts of tunnel assessment have problems with rating rock mass. In this study, using multivariate analysis based on domestic data(1011EA) of water conveyance tunnel, we presented rock mass rating system which is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, orientation of discontinuities, intact rock strength, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system. And using data which have been collected at other site, we examined that presented multiple regression model was useful.

  • PDF

RMR 분류법의 국내 적용성 평가 (An Evaluation of Rock Mass Rating System As Design Aids in Korea)

  • 구호본;배규진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.209-216
    • /
    • 1994
  • Rock mass classifications have played an indispensable role in underground construction for several decades. An important issue in rock mass classifications is the selection of the parameters of greatest significance. There appears to be no single parameter that can fully describe a jointed rock mass for underground construction design. In this paper. We find some problems shen applied rock mass classification for underground construction in domestic, analyze the most significant parameters and parameters correlation influencing the behavior of a rock mass, and suggest the Simplied Rock Mass Rating system based on RMR method for effective underground supports.

  • PDF

다변량분석을 이용한 터널에서의 효율적인 암반분류에 관한 연구 (A Study of Efficient Rock Mass Rating for Tunnel Using Multivariate Analysis)

  • 위용곤;노상림;윤지선
    • 한국터널지하공간학회 논문집
    • /
    • 제2권2호
    • /
    • pp.41-49
    • /
    • 2000
  • 지하 터널 굴착 등의 암반 공학적 문제에 있어서 암반분류가 널리 적용되고 있다. 하지만, 조사 방법이 체계화되어 있지 않아서 터널 지질 전문가라 할지라도 암반분류에 어려움이 많은 문제점을 가지고 있다. 본 연구에서는 다변량분석을 이용하여 객관적이고 사용하기 간편한 암반분류법을 제시하였다. RMR 요소는 RQD, 절리상태, 지하수, 강도, 보정, 절리간격 순으로 중요도가 결정되었으며, 각각의 단계에서 RMR에 관한 최적의 다중회귀모형식을 제시하였다.

  • PDF

암반 사면에 대한 새로운 암반 분류안의 적용 (Applicaton of a Geomechanical Classification for Rock Slope)

  • 김대복
    • 터널과지하공간
    • /
    • 제4권3호
    • /
    • pp.215-227
    • /
    • 1994
  • Rock Mass classifications have been developed in many European countries. The most widely used classification methods are the Rock Mass Rating (RMR) system proposed by Bieniawski(1973) and the Q-system developed By Barton et al. (1974). These methods are also adopted at many mountain tunnels and subway sites in our country. Here, a geomechanical classification for slopeds in rock, the "Slope Mass Rating"(SMR) is presented for the preliminary assessment of slope stabiliyt. This method can be applied to excavation and support design in the front part of tunnel and cutting area as a guide line and recommendation on support methods which allow a systemmetic use of geomechanical classification for rock slopes.

  • PDF

단양 석회석 광산터널의 암반 평가 및 안정성 연구 (Study on the stability of tunnel and rock mass classification in Danyang limestone quarry)

  • 신희순
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.131-143
    • /
    • 1996
  • In-situ survey and laboratory rock test were carried out for rating rock mass around the tunnel that some failures had been occurred in Danyang limestone quarry. For rating rock mass, several methods such as RMR, Q-system, rock strength etc. were applied. The stability analysis on tunnel was evaluated by numerical method FLAC. And The block theory using streographic projection was also applied for stability analysis. The 3-4 major discontinuity sets are distributed in rock mass around tunnel.

  • PDF

Assessment of rock slope stability by slope mass rating (SMR): A case study for the gas flare site in Assalouyeh, South of Iran

  • Azarafza, Mohammad;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • 제13권4호
    • /
    • pp.571-584
    • /
    • 2017
  • Slope mass rating (SMR) is commonly used for the geomechanical classification of rock masses in an attempt to evaluate the stability of slopes. SMR is calculated from the $RMR_{89-basic}$ (basic rock mass rating) and from the characteristic features of discontinuities, and may be applied to slope stability analysis as well as to slope support recommendations. This study attempts to utilize the SMR classification system for slope stability analysis and to investigate the engineering geological conditions of the slopes and the slope stability analysis of the Gas Flare site in phases 6, 7 and 8 of the South Pars Gas Complex in Assalouyeh, south of Iran. After studying a total of twelve slopes, the results of the SMR classification system indicated that three slope failure modes, namely, wedge, plane and mass failure were possible along the slopes. In addition, the stability analyses conducted by a number of computer programs indicated that three of the slopes were stable, three of the slopes were unstable and the remaining six slopes were categorized as 'needs attention'classes.

전기비저항탐사결과와 터널막장 암반분류의 상관성 검토 (A study on the correlation between the result of electrical resistivity survey and the rock mass classification values determined by the tunnel face mapping)

  • 최재화;조철현;류동우;김학규;서백수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.265-272
    • /
    • 2003
  • In this study, the rock mass classification results from the face mapping and the resistivity inversion data are compared and analyzed for the reliability investigation of the determination of the rock support type based on the surface electrical survey. To get the quantitative correlation, rock engineering indices such as RCR(rock condition rating), N(Rock mass number), Q-system based on RMR(rock mass rating) are calculated. Kriging method as a post processing technique for global optimization is used to improve its resolution. The result of correlation analysis shows that the geological condition estimated from 2D electrical resistivity survey is coincident globally with the trend of rock type except for a few local areas. The correlation between the results of 3D electrical resistivity survey and the rock mass classification turns out to be very high. It can be concluded that 3D electrical resistivity survey is powerful to set up the reliable rock support type.

  • PDF

전기비저항탐사결과와 터널막장 암반분류의 상관성 검토 (A study on the Correlation Between the Result of Electrical Resistivity Survey and the Rock Mass Classification Values Determined by the Tunnel Face Mapping)

  • 최재화;조철현;류동우;김훈;오병삼;강문구;서백수
    • 터널과지하공간
    • /
    • 제13권4호
    • /
    • pp.279-286
    • /
    • 2003
  • 최근의 터널설계에 있어서 지보패턴 선정시 전기비저항탐사 결과를 효과적으로 황용하기 위하여 전기비 저항 역산결과와 암반분류와의 상관관계를 도출해 내고자 하는 시도가 이루어지고 있다. 그러나 전기비저항탐사결과를 고려한 예상지보패턴과 실제로 시공된 지보패턴 결과를 비교한 연구는 찾아보기 힘들다. 본 연구에서는 실제 터널굴진 상태에서 막장관찰에 기초한 암반분류 및 지보패턴 선정과 시공 전 수행한 전기비저항 탐사자료를 비교함으로씨 전기비저항 탐사 결과가 어느 정도의 신뢰도로 이용될 수 있는가를 살펴보고자 한다. 전기비저항 자료와 암반분류의 정량적인 상관성을 얻기 위하여 암반분류값으로 RMR(Rock mass rating)을 기본으로, RCR(rock condition rating), N(Rock mass number), Q-system 등을 이용하였다. 전기비저항탐사는 공간적 해상도가 낮기 때문에 후처리 과정으로 크리깅 기법을 사용하여 해상도를 향상시키고자 하였다. 상관도 분석 결과, 2차원 전기비저항탐사결과는 정성적인 경향을 살펴보는데 적합한 것으로 나타났다 3차원 전기비저항탐사 결과와의 상관관계는 매우 높은 것으로 나타나 신뢰도 높은 암반분류에 적용 가능하리라 예상된다.

지공학적 암반분류의 재평가 (REVALUATION OF )

  • 김교원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1993년도 봄 학술회 논문집
    • /
    • pp.33-40
    • /
    • 1993
  • The Bieniawski's geomechanics classification system(1984) is widely employed as a tool of engineering evaluation of rock masses for tunnel design. Since the siz parameters adoped in the system are believed to control the engineering behavior of rock mass under an external load, no question may be raised to the conceptional idea immanent in the system. However, the rating grade for each individual parameter given in the system may be properly measured since an engineering property of rock mass is not stepwise changed but continuously changed. In order to get the proper rating grade based upon the continuously changed properties in each parameter, several equations presented in this paper are obtained through regration analyses with the grades and median values of properties givne in the system. A FORTRAN computer program given in the paper could provide not only RMR value but also rock mass properties (E, c, o, v, etc.) using the empirical equations.

  • PDF

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.